Rajalaxmi Padhy, S. Swain, S. Dash, Jibitesh Mishra
{"title":"Classification of Low-Resolution Satellite Images Using Fractal Augmented Descriptors","authors":"Rajalaxmi Padhy, S. Swain, S. Dash, Jibitesh Mishra","doi":"10.1142/S0219467822500024","DOIUrl":null,"url":null,"abstract":"Satellite imagery consists of highly complex spatial features that make it difficult for traditional image processing techniques to use them for classification tasks. In this paper, we propose a novel method to use these hidden fractal information that naturally exist in these satellite images. We have designed a fractal-based descriptor which generates a scale invariant fractal image for easier fractal-based pattern extraction and uses it as an added feature vector that is combined with the original image and fed into a VGG-16 deep learning architecture which successfully classifies even low-resolution satellite images with an f1-score of 0.78.","PeriodicalId":177479,"journal":{"name":"Int. J. Image Graph.","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Image Graph.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S0219467822500024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Satellite imagery consists of highly complex spatial features that make it difficult for traditional image processing techniques to use them for classification tasks. In this paper, we propose a novel method to use these hidden fractal information that naturally exist in these satellite images. We have designed a fractal-based descriptor which generates a scale invariant fractal image for easier fractal-based pattern extraction and uses it as an added feature vector that is combined with the original image and fed into a VGG-16 deep learning architecture which successfully classifies even low-resolution satellite images with an f1-score of 0.78.