Classification of Low-Resolution Satellite Images Using Fractal Augmented Descriptors

Rajalaxmi Padhy, S. Swain, S. Dash, Jibitesh Mishra
{"title":"Classification of Low-Resolution Satellite Images Using Fractal Augmented Descriptors","authors":"Rajalaxmi Padhy, S. Swain, S. Dash, Jibitesh Mishra","doi":"10.1142/S0219467822500024","DOIUrl":null,"url":null,"abstract":"Satellite imagery consists of highly complex spatial features that make it difficult for traditional image processing techniques to use them for classification tasks. In this paper, we propose a novel method to use these hidden fractal information that naturally exist in these satellite images. We have designed a fractal-based descriptor which generates a scale invariant fractal image for easier fractal-based pattern extraction and uses it as an added feature vector that is combined with the original image and fed into a VGG-16 deep learning architecture which successfully classifies even low-resolution satellite images with an f1-score of 0.78.","PeriodicalId":177479,"journal":{"name":"Int. J. Image Graph.","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Image Graph.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S0219467822500024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Satellite imagery consists of highly complex spatial features that make it difficult for traditional image processing techniques to use them for classification tasks. In this paper, we propose a novel method to use these hidden fractal information that naturally exist in these satellite images. We have designed a fractal-based descriptor which generates a scale invariant fractal image for easier fractal-based pattern extraction and uses it as an added feature vector that is combined with the original image and fed into a VGG-16 deep learning architecture which successfully classifies even low-resolution satellite images with an f1-score of 0.78.
基于分形增广描述子的低分辨率卫星图像分类
卫星图像包含高度复杂的空间特征,这使得传统的图像处理技术难以将其用于分类任务。在本文中,我们提出了一种新的方法来利用这些隐藏的分形信息,这些信息在这些卫星图像中自然存在。我们设计了一个基于分形的描述符,它生成一个尺度不变的分形图像,以便更容易地提取基于分形的模式,并将其用作与原始图像相结合的附加特征向量,并将其输入到VGG-16深度学习架构中,该架构成功地分类了低分辨率的卫星图像,其f1得分为0.78。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信