Toward stochastic modeling of obstacle detectability in passive stereo range imagery

L. Matthies
{"title":"Toward stochastic modeling of obstacle detectability in passive stereo range imagery","authors":"L. Matthies","doi":"10.1109/CVPR.1992.223178","DOIUrl":null,"url":null,"abstract":"To design high-performance obstacle detection systems for semi-autonomous navigation, it will be necessary to characterize the performance of obstacle detection sensors in quantitative, statistical terms and to develop design methodologies that relate task requirements (e.g., vehicle speed) to sensor system parameters (e.g., image resolution). Steps to be taken to realize such a methodology are outlined. For the specific case of obstacle detection with passive stereo range imagery, the development of the statistical models needed for the methodology is begun, and experimental results for outdoor images of a gravel road, which test the models empirically, are presented. The experimental results show sample error distributions for estimates of disparity and range, illustrate systematic errors caused by partial occlusion, and demonstrate that effective obstacle detection is achievable.<<ETX>>","PeriodicalId":325476,"journal":{"name":"Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.1992.223178","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34

Abstract

To design high-performance obstacle detection systems for semi-autonomous navigation, it will be necessary to characterize the performance of obstacle detection sensors in quantitative, statistical terms and to develop design methodologies that relate task requirements (e.g., vehicle speed) to sensor system parameters (e.g., image resolution). Steps to be taken to realize such a methodology are outlined. For the specific case of obstacle detection with passive stereo range imagery, the development of the statistical models needed for the methodology is begun, and experimental results for outdoor images of a gravel road, which test the models empirically, are presented. The experimental results show sample error distributions for estimates of disparity and range, illustrate systematic errors caused by partial occlusion, and demonstrate that effective obstacle detection is achievable.<>
被动立体距离图像中障碍物可探测性的随机建模研究
为了设计用于半自主导航的高性能障碍物检测系统,有必要用定量、统计术语来描述障碍物检测传感器的性能,并开发将任务要求(例如,车辆速度)与传感器系统参数(例如,图像分辨率)联系起来的设计方法。概述了为实现这种方法应采取的步骤。针对被动立体距离图像障碍物检测的具体情况,开始了该方法所需的统计模型的开发,并给出了砾石路面室外图像的实验结果,对模型进行了经验检验。实验结果显示了视差和距离估计的样本误差分布,说明了部分遮挡引起的系统误差,并证明了有效的障碍物检测是可以实现的
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信