Simulation of transport problem with clustering velocity-density function

Ferdian Akbar Daniswara, P. H. Gunawan
{"title":"Simulation of transport problem with clustering velocity-density function","authors":"Ferdian Akbar Daniswara, P. H. Gunawan","doi":"10.1109/ICoICT49345.2020.9166178","DOIUrl":null,"url":null,"abstract":"This paper discusses the use of K-Means clustering method in finding an estimate of the velocity-density function in the traffic flow model. Two clusters will be obtained using KMeans clustering process, which are jammed and light cluster. These two clusters will have different velocity-density functions based on clustering result. Here, velocity-density function is obtained from linear regression of each data cluster. For measuring the velocity-density function, then this paper will provide the value of RMSE and R-Squared. The results show that RMSE is 2.3396 and R-squared is 0.3591 when no cluster is implemented in numerical simulation. Meanwhile, for the light cluster, the RMSE is found 1.1795 and R-squared 0.1388. Moreover, for the jammed cluster, RMSE is 0.8723 and R-squared is 0.1357. Finally, the process of identifying traffic conditions in the numerical simulation is done by computing Euclidean distance from centroid of clusters.","PeriodicalId":113108,"journal":{"name":"2020 8th International Conference on Information and Communication Technology (ICoICT)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 8th International Conference on Information and Communication Technology (ICoICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICoICT49345.2020.9166178","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper discusses the use of K-Means clustering method in finding an estimate of the velocity-density function in the traffic flow model. Two clusters will be obtained using KMeans clustering process, which are jammed and light cluster. These two clusters will have different velocity-density functions based on clustering result. Here, velocity-density function is obtained from linear regression of each data cluster. For measuring the velocity-density function, then this paper will provide the value of RMSE and R-Squared. The results show that RMSE is 2.3396 and R-squared is 0.3591 when no cluster is implemented in numerical simulation. Meanwhile, for the light cluster, the RMSE is found 1.1795 and R-squared 0.1388. Moreover, for the jammed cluster, RMSE is 0.8723 and R-squared is 0.1357. Finally, the process of identifying traffic conditions in the numerical simulation is done by computing Euclidean distance from centroid of clusters.
具有聚类速度-密度函数的运输问题模拟
本文讨论了k -均值聚类方法在交通流模型中寻找速度-密度函数估计的应用。采用KMeans聚类方法得到两个聚类,分别是拥挤聚类和轻聚类。根据聚类结果,这两个簇将具有不同的速度-密度函数。这里,速度-密度函数是通过对每个数据簇的线性回归得到的。为了测量速度-密度函数,本文将给出RMSE和R-Squared的值。结果表明,在不加入聚类的情况下,数值模拟的RMSE为2.3396,r²为0.3591。同时,对于轻星团,RMSE为1.1795,r平方为0.1388。此外,对于拥挤的群集,RMSE为0.8723,r平方为0.1357。最后,通过计算聚类到质心的欧氏距离来识别数值模拟中的交通状况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信