Fault diagnosis using state information

V. Boppana, I. Hartanto, W. Fuchs
{"title":"Fault diagnosis using state information","authors":"V. Boppana, I. Hartanto, W. Fuchs","doi":"10.1109/FTCS.1996.534598","DOIUrl":null,"url":null,"abstract":"Repeated fault diagnosis on large integrated circuits may often be computationally prohibitive due to expensive fault simulation requirements. Fault dictionaries can help alleviate this problem, but they may be infeasible to store because of their large sizes, and more importantly, they typically provide only a black box view of the circuit and hence almost no diagnostic flexibility. The problem occurs because dictionaries usually only store primary output information. A new approach to fault diagnosis based on state information is presented. The selective storage of state information is shown to significantly improve the time for diagnostic fault simulation. We also describe a method to reduce the amount of information stored by choosing only a subset of the state space. This approach is shown to be ideally suited for partial scan circuits whose simple structure is exploited to reduce storage requirements. Experiments on the ISCAS 89 benchmark circuits are performed to demonstrate the efficiency of the state information based diagnosis technique.","PeriodicalId":191163,"journal":{"name":"Proceedings of Annual Symposium on Fault Tolerant Computing","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Annual Symposium on Fault Tolerant Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FTCS.1996.534598","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

Repeated fault diagnosis on large integrated circuits may often be computationally prohibitive due to expensive fault simulation requirements. Fault dictionaries can help alleviate this problem, but they may be infeasible to store because of their large sizes, and more importantly, they typically provide only a black box view of the circuit and hence almost no diagnostic flexibility. The problem occurs because dictionaries usually only store primary output information. A new approach to fault diagnosis based on state information is presented. The selective storage of state information is shown to significantly improve the time for diagnostic fault simulation. We also describe a method to reduce the amount of information stored by choosing only a subset of the state space. This approach is shown to be ideally suited for partial scan circuits whose simple structure is exploited to reduce storage requirements. Experiments on the ISCAS 89 benchmark circuits are performed to demonstrate the efficiency of the state information based diagnosis technique.
使用状态信息进行故障诊断
由于昂贵的故障仿真要求,大型集成电路的重复故障诊断往往在计算上难以实现。故障字典可以帮助缓解这个问题,但是由于它们的尺寸太大,它们可能无法存储,更重要的是,它们通常只提供电路的黑盒子视图,因此几乎没有诊断灵活性。出现这个问题是因为字典通常只存储主要的输出信息。提出了一种基于状态信息的故障诊断方法。状态信息的选择性存储可以显著提高故障诊断仿真的时间。我们还描述了一种通过只选择状态空间的一个子集来减少存储信息量的方法。这种方法被证明非常适合部分扫描电路,其简单的结构被利用来减少存储要求。在iscas89基准电路上进行了实验,验证了基于状态信息的诊断技术的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信