Orthogonal Matching Pursuit for Text Classification

NUT@EMNLP Pub Date : 2018-07-01 DOI:10.18653/v1/w18-6113
Konstantinos Skianis, Nikolaos Tziortziotis, M. Vazirgiannis
{"title":"Orthogonal Matching Pursuit for Text Classification","authors":"Konstantinos Skianis, Nikolaos Tziortziotis, M. Vazirgiannis","doi":"10.18653/v1/w18-6113","DOIUrl":null,"url":null,"abstract":"In text classification, the problem of overfitting arises due to the high dimensionality, making regularization essential. Although classic regularizers provide sparsity, they fail to return highly accurate models. On the contrary, state-of-the-art group-lasso regularizers provide better results at the expense of low sparsity. In this paper, we apply a greedy variable selection algorithm, called Orthogonal Matching Pursuit, for the text classification task. We also extend standard group OMP by introducing overlapping Group OMP to handle overlapping groups of features. Empirical analysis verifies that both OMP and overlapping GOMP constitute powerful regularizers, able to produce effective and very sparse models. Code and data are available online.","PeriodicalId":207795,"journal":{"name":"NUT@EMNLP","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NUT@EMNLP","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/w18-6113","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In text classification, the problem of overfitting arises due to the high dimensionality, making regularization essential. Although classic regularizers provide sparsity, they fail to return highly accurate models. On the contrary, state-of-the-art group-lasso regularizers provide better results at the expense of low sparsity. In this paper, we apply a greedy variable selection algorithm, called Orthogonal Matching Pursuit, for the text classification task. We also extend standard group OMP by introducing overlapping Group OMP to handle overlapping groups of features. Empirical analysis verifies that both OMP and overlapping GOMP constitute powerful regularizers, able to produce effective and very sparse models. Code and data are available online.
文本分类的正交匹配追踪
在文本分类中,由于文本的高维数,会产生过拟合的问题,因此正则化是必不可少的。尽管经典正则化器提供了稀疏性,但它们不能返回高度精确的模型。相反,最先进的群套索正则化器以低稀疏性为代价提供了更好的结果。本文将一种贪婪变量选择算法——正交匹配追踪算法应用于文本分类任务。我们还通过引入重叠组OMP来扩展标准组OMP,以处理重叠组的特征。实证分析验证了OMP和重叠的GOMP都构成了强大的正则化器,能够产生有效且非常稀疏的模型。代码和数据可在网上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信