Sanger's Like Systems for Generalized Principal and Minor Component Analysis

M. Hasan
{"title":"Sanger's Like Systems for Generalized Principal and Minor Component Analysis","authors":"M. Hasan","doi":"10.1109/SAM.2006.1706168","DOIUrl":null,"url":null,"abstract":"In this paper generalizations of Sanger's learning rule for nondefinite matrices are explored. It is shown that the left and right principal components of any matrix can be computed so that these components upper triangulize the original matrix. We also modified the original Sanger's system to obtain new dynamical systems with a larger domain of attraction. Stability analysis for several Sanger's type systems for the standard and generalized principal, and minor component analyzers applied to nonsymmetric matrices is developed","PeriodicalId":272327,"journal":{"name":"Fourth IEEE Workshop on Sensor Array and Multichannel Processing, 2006.","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fourth IEEE Workshop on Sensor Array and Multichannel Processing, 2006.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAM.2006.1706168","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper generalizations of Sanger's learning rule for nondefinite matrices are explored. It is shown that the left and right principal components of any matrix can be computed so that these components upper triangulize the original matrix. We also modified the original Sanger's system to obtain new dynamical systems with a larger domain of attraction. Stability analysis for several Sanger's type systems for the standard and generalized principal, and minor component analyzers applied to nonsymmetric matrices is developed
广义主次元分析的Sanger类系统
本文探讨了非定矩阵的Sanger学习规则的推广。证明了可以计算任意矩阵的左右主成分,使这些成分上三角化原始矩阵。我们还对原有的Sanger系统进行了改进,得到了具有更大引力域的新的动力系统。给出了几种适用于非对称矩阵的Sanger型系统的标准、广义主分量和小分量分析的稳定性分析
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信