Leveraging deep learning representation for search-based image annotation

Mahya Mohammadi Kashani, S. H. Amiri
{"title":"Leveraging deep learning representation for search-based image annotation","authors":"Mahya Mohammadi Kashani, S. H. Amiri","doi":"10.1109/AISP.2017.8324073","DOIUrl":null,"url":null,"abstract":"Image annotation aims to assign some tags to an image such that these tags provide a textual description for the content of image. Search-based methods extract relevant tags for an image based on the tags of nearest neighbor images in the training set. In these methods, similarity of two images is determined based on the distance between feature vectors of the images. Thus, it is essential to extract informative feature vectors from images. In this paper, we propose a framework that utilize deep learning to obtain visual representation of images. We apply different architectures of convolutional neural networks (CNN) to the input image and obtain a single feature vector that is a rich representation for visual content of the image. In this way, we eliminate the usage of multiple feature vectors used in the state-of-the-art annotation methods. We also integrate our feature extractors with a nearest neighbors approach to obtain relevant tags of an image. Our experiments on the standard datasets of image annotation (including Corel5k, ESP Game, IAPR) demonstrate that our approach reaches higher precision, recall and F1 than the state-of-the-art methods such as 2PKNN, TagProp, NMF-KNN and etc.","PeriodicalId":386952,"journal":{"name":"2017 Artificial Intelligence and Signal Processing Conference (AISP)","volume":"84 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Artificial Intelligence and Signal Processing Conference (AISP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AISP.2017.8324073","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Image annotation aims to assign some tags to an image such that these tags provide a textual description for the content of image. Search-based methods extract relevant tags for an image based on the tags of nearest neighbor images in the training set. In these methods, similarity of two images is determined based on the distance between feature vectors of the images. Thus, it is essential to extract informative feature vectors from images. In this paper, we propose a framework that utilize deep learning to obtain visual representation of images. We apply different architectures of convolutional neural networks (CNN) to the input image and obtain a single feature vector that is a rich representation for visual content of the image. In this way, we eliminate the usage of multiple feature vectors used in the state-of-the-art annotation methods. We also integrate our feature extractors with a nearest neighbors approach to obtain relevant tags of an image. Our experiments on the standard datasets of image annotation (including Corel5k, ESP Game, IAPR) demonstrate that our approach reaches higher precision, recall and F1 than the state-of-the-art methods such as 2PKNN, TagProp, NMF-KNN and etc.
利用深度学习表示进行基于搜索的图像标注
图像注释旨在为图像分配一些标签,以便这些标签为图像的内容提供文本描述。基于搜索的方法是基于训练集中最近邻图像的标签提取图像的相关标签。在这些方法中,根据图像特征向量之间的距离来确定两幅图像的相似度。因此,从图像中提取信息特征向量是至关重要的。在本文中,我们提出了一个利用深度学习来获得图像视觉表示的框架。我们将卷积神经网络(CNN)的不同架构应用于输入图像,并获得单个特征向量,该特征向量是图像视觉内容的丰富表示。通过这种方式,我们消除了在最先进的注释方法中使用的多个特征向量的使用。我们还将我们的特征提取器与最近邻方法相结合,以获得图像的相关标签。我们在Corel5k、ESP Game、IAPR等标准图像标注数据集上的实验表明,我们的方法比目前最先进的方法如2PKNN、TagProp、NMF-KNN等达到了更高的准确率、召回率和F1。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信