Probability estimation in hybrid NN-HMM speech recognition systems with real-time neural networks

S. Georgescu
{"title":"Probability estimation in hybrid NN-HMM speech recognition systems with real-time neural networks","authors":"S. Georgescu","doi":"10.1109/IJSIS.1998.685486","DOIUrl":null,"url":null,"abstract":"FAPES system is based on a specialized fuzzy ARTMAP NN trained to estimate the observation probabilities in continuous parameter HMM (CHMM) speech recognition systems. The fuzzy ARTMAP classifier transfers after ART resonance, the choice function of all eligible nodes to a single layer perceptron (SLP) defuzzifier. There, the fuzzy scores are mapped to the a-posteriori probabilities of visiting CHMM states. Lower computing time results from estimating observation probabilities with such local error propagation NN, than with well-known multilayer perceptron. The fuzzy ARTMAP NN determines inherent discrimination among generated probabilities, discrimination usually added into HMM training by using the complex MMIE algorithm. Iterative training has been used to instruct the fuzzy ARTMAP and the SLP defuzzifier. The CHMM component was not trained due to small changes of transition probabilities.","PeriodicalId":289764,"journal":{"name":"Proceedings. IEEE International Joint Symposia on Intelligence and Systems (Cat. No.98EX174)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. IEEE International Joint Symposia on Intelligence and Systems (Cat. No.98EX174)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJSIS.1998.685486","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

FAPES system is based on a specialized fuzzy ARTMAP NN trained to estimate the observation probabilities in continuous parameter HMM (CHMM) speech recognition systems. The fuzzy ARTMAP classifier transfers after ART resonance, the choice function of all eligible nodes to a single layer perceptron (SLP) defuzzifier. There, the fuzzy scores are mapped to the a-posteriori probabilities of visiting CHMM states. Lower computing time results from estimating observation probabilities with such local error propagation NN, than with well-known multilayer perceptron. The fuzzy ARTMAP NN determines inherent discrimination among generated probabilities, discrimination usually added into HMM training by using the complex MMIE algorithm. Iterative training has been used to instruct the fuzzy ARTMAP and the SLP defuzzifier. The CHMM component was not trained due to small changes of transition probabilities.
基于实时神经网络的混合NN-HMM语音识别系统的概率估计
FAPES系统是基于经过训练的专用模糊ARTMAP神经网络来估计连续参数HMM (CHMM)语音识别系统中的观测概率。模糊ARTMAP分类器在ART共振后,将所有符合条件的节点的选择函数转移到单层感知器(SLP)去模糊化。在那里,模糊分数被映射到访问CHMM状态的后验概率。与传统的多层感知器相比,这种局部误差传播神经网络估计观测概率的计算时间更短。模糊ARTMAP神经网络确定生成概率之间的固有判别,这种判别通常通过使用复杂的MMIE算法添加到HMM训练中。采用迭代训练方法指导模糊ARTMAP和SLP去模糊器。由于过渡概率的小变化,CHMM分量没有得到训练。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信