A Survey on Satisfiability Checking for the μ-Calculus through Tree Automata

D. Hausmann, Nir Piterman
{"title":"A Survey on Satisfiability Checking for the μ-Calculus through Tree Automata","authors":"D. Hausmann, Nir Piterman","doi":"10.48550/arXiv.2207.00517","DOIUrl":null,"url":null,"abstract":". Algorithms for model checking and satisfiability of the modal µ -calculus start by converting formulas to alternating parity tree automata. Thus, model checking is reduced to checking acceptance by tree automata and satisfiability to checking their emptiness. The first reduces directly to the solution of parity games but the second is more compli-cated.Wereview the non-emptiness checking of alternating tree automata by a reduction to solving parity games of a certain structure, so-called emptiness games . Since the emptiness problem for alternating tree automata is ExpTime -complete, the size of these games is exponential in the number of states of the input automaton. We show how the construction of the emptiness games combines a (fixed) structural part with (history-)determinization of parity word automata. For tree automata with certain syntactic structures, simpler methods may be used to handle the treatment of the word automata, which then may be asymptotically smaller than in the general case. These results have direct consequences in satisfiability and validity checking for (various fragments of) the modal µ -calculus.","PeriodicalId":334753,"journal":{"name":"Principles of Systems Design","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Principles of Systems Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2207.00517","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

. Algorithms for model checking and satisfiability of the modal µ -calculus start by converting formulas to alternating parity tree automata. Thus, model checking is reduced to checking acceptance by tree automata and satisfiability to checking their emptiness. The first reduces directly to the solution of parity games but the second is more compli-cated.Wereview the non-emptiness checking of alternating tree automata by a reduction to solving parity games of a certain structure, so-called emptiness games . Since the emptiness problem for alternating tree automata is ExpTime -complete, the size of these games is exponential in the number of states of the input automaton. We show how the construction of the emptiness games combines a (fixed) structural part with (history-)determinization of parity word automata. For tree automata with certain syntactic structures, simpler methods may be used to handle the treatment of the word automata, which then may be asymptotically smaller than in the general case. These results have direct consequences in satisfiability and validity checking for (various fragments of) the modal µ -calculus.
用树自动机检验μ微积分可满足性的研究
.模型检查和模态微演算的可满足性算法从将公式转换为交替奇偶树自动机开始。从而将模型检验简化为树自动机的验收检验,将模型的可满足性简化为树自动机的空性检验。第一种方法直接归结为奇偶性博弈的解决方案,但第二种方法更为复杂。我们将交变树自动机的非空校验归结为求解某种结构的宇称对策,即所谓的空对策。由于交替树形自动机的空性问题是ExpTime完备的,因此这些博弈的大小在输入自动机的状态数中呈指数增长。我们展示了如何将一个(固定的)结构部分与奇偶词自动机的(历史)确定相结合来构造空性游戏。对于具有特定语法结构的树形自动机,可以使用更简单的方法来处理词自动机的处理,然后它可能比一般情况下渐进地小。这些结果对模态微演算的可满足性和有效性检查有直接的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信