Intensity distribution of non-linear scattering states

T. Hartmann, J. Urbina, K. Richter, P. Schlagheck
{"title":"Intensity distribution of non-linear scattering states","authors":"T. Hartmann, J. Urbina, K. Richter, P. Schlagheck","doi":"10.1063/1.4745581","DOIUrl":null,"url":null,"abstract":"We investigate the interplay between coherent effects characteristic of the propagation of linear waves, the non-linear effects due to interactions, and the quantum manifestations of classical chaos due to geometrical confinement, as they arise in the context of the transport of Bose-Einstein condensates. We specifically show that, extending standard methods for non-interacting systems, the body of the statistical distribution of intensities for scattering states solving the Gross-Pitaevskii equation is very well described by a local Gaussian ansatz with a position-dependent variance. We propose a semiclassical approach based on interfering classical paths to fix the single parameter describing the universal deviations from a global Gaussian distribution. Being tail effects, rare events like rogue waves characteristic of non-linear field equations do not affect our results.","PeriodicalId":166772,"journal":{"name":"arXiv: Chaotic Dynamics","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Chaotic Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/1.4745581","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We investigate the interplay between coherent effects characteristic of the propagation of linear waves, the non-linear effects due to interactions, and the quantum manifestations of classical chaos due to geometrical confinement, as they arise in the context of the transport of Bose-Einstein condensates. We specifically show that, extending standard methods for non-interacting systems, the body of the statistical distribution of intensities for scattering states solving the Gross-Pitaevskii equation is very well described by a local Gaussian ansatz with a position-dependent variance. We propose a semiclassical approach based on interfering classical paths to fix the single parameter describing the universal deviations from a global Gaussian distribution. Being tail effects, rare events like rogue waves characteristic of non-linear field equations do not affect our results.
非线性散射态的强度分布
我们研究了线性波传播的相干效应,由于相互作用引起的非线性效应,以及由于几何约束引起的经典混沌的量子表现之间的相互作用,因为它们出现在玻色-爱因斯坦凝聚体的输运背景下。我们特别表明,扩展非相互作用系统的标准方法,求解Gross-Pitaevskii方程的散射态强度统计分布的主体可以很好地描述为具有位置相关方差的局部高斯方差。我们提出了一种基于干扰经典路径的半经典方法来固定描述全局高斯分布普遍偏差的单个参数。作为尾部效应,非线性场方程的异常波等罕见事件不影响我们的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信