POSTER: Neural Network-based Graph Embedding for Malicious Accounts Detection

Ziqi Liu, Chaochao Chen, Jun Zhou, Xiaolong Li, Feng Xu, Tao Chen, Le Song
{"title":"POSTER: Neural Network-based Graph Embedding for Malicious Accounts Detection","authors":"Ziqi Liu, Chaochao Chen, Jun Zhou, Xiaolong Li, Feng Xu, Tao Chen, Le Song","doi":"10.1145/3133956.3138827","DOIUrl":null,"url":null,"abstract":"We present a neural network based graph embedding method for detecting malicious accounts at Alipay, one of the world's leading mobile payment platform. Our method adaptively learns discriminative embeddings from an account-device graph based on two fundamental weaknesses of attackers, i.e. device aggregation and activity aggregation. Experiments show that our method achieves outstanding precision-recall curve compared with existing methods.","PeriodicalId":191367,"journal":{"name":"Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3133956.3138827","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

We present a neural network based graph embedding method for detecting malicious accounts at Alipay, one of the world's leading mobile payment platform. Our method adaptively learns discriminative embeddings from an account-device graph based on two fundamental weaknesses of attackers, i.e. device aggregation and activity aggregation. Experiments show that our method achieves outstanding precision-recall curve compared with existing methods.
海报:基于神经网络的图嵌入恶意账户检测
我们提出了一种基于神经网络的图嵌入方法来检测支付宝的恶意账户,支付宝是世界领先的移动支付平台之一。我们的方法基于攻击者的两个基本弱点,即设备聚合和活动聚合,自适应地从帐户-设备图中学习判别嵌入。实验表明,与现有方法相比,我们的方法获得了更好的查准率曲线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信