Blind source separation of electromagnetic signals based on one-dimensional U-Net

Yang Chen, Jinming Liu, Jian Mao
{"title":"Blind source separation of electromagnetic signals based on one-dimensional U-Net","authors":"Yang Chen, Jinming Liu, Jian Mao","doi":"10.1145/3573428.3573709","DOIUrl":null,"url":null,"abstract":"Digital electronic equipment emits electromagnetic signals under working conditions, resulting in information leakage and a serious threat to information security. To explore the extent of leakage of important information, blind source separation techniques are used to separate and detect mixed electromagnetic radiation signals. Deep learning techniques provide a feasible option for blind source separation detection of electromagnetic signals in noisy environments. In this paper, we use a one-dimensional u-net to blindly separate the electromagnetic signals leaked by the LCD display. Experiments show that the one-dimensional U-Net with five layers of ELU activation function has the best performance.","PeriodicalId":314698,"journal":{"name":"Proceedings of the 2022 6th International Conference on Electronic Information Technology and Computer Engineering","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 6th International Conference on Electronic Information Technology and Computer Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3573428.3573709","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Digital electronic equipment emits electromagnetic signals under working conditions, resulting in information leakage and a serious threat to information security. To explore the extent of leakage of important information, blind source separation techniques are used to separate and detect mixed electromagnetic radiation signals. Deep learning techniques provide a feasible option for blind source separation detection of electromagnetic signals in noisy environments. In this paper, we use a one-dimensional u-net to blindly separate the electromagnetic signals leaked by the LCD display. Experiments show that the one-dimensional U-Net with five layers of ELU activation function has the best performance.
基于一维U-Net的电磁信号盲源分离
数字电子设备在工作状态下会发出电磁信号,造成信息泄露,严重威胁信息安全。为了探究重要信息的泄漏程度,采用盲源分离技术对混合电磁辐射信号进行分离和检测。深度学习技术为噪声环境下电磁信号的盲源分离检测提供了一种可行的选择。本文采用一维u网对液晶显示器泄漏的电磁信号进行盲分离。实验表明,具有五层ELU激活函数的一维U-Net具有最好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信