Image denoising by independent component analysis based on dyadic wavelet transform

Zhenghong Huang
{"title":"Image denoising by independent component analysis based on dyadic wavelet transform","authors":"Zhenghong Huang","doi":"10.1109/ICWAPR.2009.5207412","DOIUrl":null,"url":null,"abstract":"Based on the dyadic wavelet transform, the threshold and threshold function are obtained adaptive with the decomposition of the dyadic wavelet coefficient by to improve of the lower bound error the noise threshold, and layered processing for threshold function. The noise mixed image was separated denoising by independent component analysis. Experiments show that the proposed method improves the signal-to-noise rate. Moreover, It's better the image precision.","PeriodicalId":424264,"journal":{"name":"2009 International Conference on Wavelet Analysis and Pattern Recognition","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Conference on Wavelet Analysis and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICWAPR.2009.5207412","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Based on the dyadic wavelet transform, the threshold and threshold function are obtained adaptive with the decomposition of the dyadic wavelet coefficient by to improve of the lower bound error the noise threshold, and layered processing for threshold function. The noise mixed image was separated denoising by independent component analysis. Experiments show that the proposed method improves the signal-to-noise rate. Moreover, It's better the image precision.
基于二进小波变换的独立分量分析图像去噪
在二进小波变换的基础上,通过对二进小波系数进行分解,提高下界误差,对噪声阈值进行分层处理,得到自适应的阈值和阈值函数。采用独立分量分析对混合噪声图像进行分离去噪。实验表明,该方法提高了信号的信噪比。此外,该方法具有更好的图像精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信