Post-Fault Power Grid Voltage Prediction via 1D-CNN with Spatial Coupling

Carson Hu, Guang Lin, Bao Wang, Meng Yue, Jack Xin
{"title":"Post-Fault Power Grid Voltage Prediction via 1D-CNN with Spatial Coupling","authors":"Carson Hu, Guang Lin, Bao Wang, Meng Yue, Jack Xin","doi":"10.1109/AI4I54798.2022.00016","DOIUrl":null,"url":null,"abstract":"We propose a one-dimensional convolutional neural network (1D-CNN) with spatial coupling for post-fault power grid voltage prediction. Our proposed deep learning framework was inspired by the celebrated Prony’s method in classical signal processing. Our spatio-temporal model significantly outperforms existing benchmarks, including long short-term memory model, and is applicable to other strong transients in power industries.","PeriodicalId":345427,"journal":{"name":"2022 5th International Conference on Artificial Intelligence for Industries (AI4I)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 5th International Conference on Artificial Intelligence for Industries (AI4I)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AI4I54798.2022.00016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We propose a one-dimensional convolutional neural network (1D-CNN) with spatial coupling for post-fault power grid voltage prediction. Our proposed deep learning framework was inspired by the celebrated Prony’s method in classical signal processing. Our spatio-temporal model significantly outperforms existing benchmarks, including long short-term memory model, and is applicable to other strong transients in power industries.
基于空间耦合的一维cnn故障后电网电压预测
提出了一种具有空间耦合的一维卷积神经网络(1D-CNN)用于故障后电网电压预测。我们提出的深度学习框架受到经典信号处理中著名的proony方法的启发。我们的时空模型明显优于现有的基准,包括长短期记忆模型,并适用于电力行业的其他强瞬变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信