Efficient DTCNN implementations for large-neighborhood functions

M. ter Brugge, J. H. Stevens, J. Nijhuis, L. Spaanenburg
{"title":"Efficient DTCNN implementations for large-neighborhood functions","authors":"M. ter Brugge, J. H. Stevens, J. Nijhuis, L. Spaanenburg","doi":"10.1109/CNNA.1998.685336","DOIUrl":null,"url":null,"abstract":"Most image processing tasks, like pattern matching, are defined in terms of large-neighborhood discrete time cellular neural network (DTCNN) templates, while most hardware implementations support only direct-neighborhood ones (3/spl times/3). Literature on DTCNN template decomposition shows that such large-neighborhood functions can be implemented as a sequence of successive direct-neighborhood templates. However, for this procedure the number of templates in the decomposition is exponential in the size of the original template. This paper shows how template decomposition is induced by the decomposition of structuring elements in the morphological design process. It is proved that an upper bound for the number of templates found in this way is quadratic in the size of the original template. For many cases more efficient and even optimal decompositions can be obtained.","PeriodicalId":171485,"journal":{"name":"1998 Fifth IEEE International Workshop on Cellular Neural Networks and their Applications. Proceedings (Cat. No.98TH8359)","volume":"182 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1998 Fifth IEEE International Workshop on Cellular Neural Networks and their Applications. Proceedings (Cat. No.98TH8359)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CNNA.1998.685336","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Most image processing tasks, like pattern matching, are defined in terms of large-neighborhood discrete time cellular neural network (DTCNN) templates, while most hardware implementations support only direct-neighborhood ones (3/spl times/3). Literature on DTCNN template decomposition shows that such large-neighborhood functions can be implemented as a sequence of successive direct-neighborhood templates. However, for this procedure the number of templates in the decomposition is exponential in the size of the original template. This paper shows how template decomposition is induced by the decomposition of structuring elements in the morphological design process. It is proved that an upper bound for the number of templates found in this way is quadratic in the size of the original template. For many cases more efficient and even optimal decompositions can be obtained.
大邻域函数的高效DTCNN实现
大多数图像处理任务,如模式匹配,都是根据大邻域离散时间细胞神经网络(DTCNN)模板定义的,而大多数硬件实现只支持直接邻域(3/ sp1倍/3)。关于DTCNN模板分解的文献表明,这种大邻域函数可以实现为一系列连续的直接邻域模板。然而,对于这个过程,分解中的模板数量是原始模板大小的指数。本文阐述了形态设计过程中结构元素的分解是如何引起模板分解的。证明了用这种方法找到的模板数目的上界是原始模板大小的二次元。在许多情况下,可以得到更有效甚至最优的分解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信