Fuzzy decision trees by fuzzy ID3 algorithm and its application to diagnosis systems

M. Umanol, H. Okamoto, I. Hatono, H. Tamura, F. Kawachi, S. Umedzu, J. Kinoshita
{"title":"Fuzzy decision trees by fuzzy ID3 algorithm and its application to diagnosis systems","authors":"M. Umanol, H. Okamoto, I. Hatono, H. Tamura, F. Kawachi, S. Umedzu, J. Kinoshita","doi":"10.1109/FUZZY.1994.343539","DOIUrl":null,"url":null,"abstract":"A popular and particularly efficient method for making a decision tree for classification from symbolic data is ID3 algorithm. Revised algorithms for numerical data have been proposed, some of which divide a numerical range into several intervals or fuzzy intervals. Their decision trees, however, are not easy to understand. We propose a new version of ID3 algorithm to generate an understandable fuzzy decision tree using fuzzy sets defined by a user. We apply it to diagnosis for potential transformers by analyzing gas in oil.<<ETX>>","PeriodicalId":153967,"journal":{"name":"Proceedings of 1994 IEEE 3rd International Fuzzy Systems Conference","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"269","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1994 IEEE 3rd International Fuzzy Systems Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZY.1994.343539","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 269

Abstract

A popular and particularly efficient method for making a decision tree for classification from symbolic data is ID3 algorithm. Revised algorithms for numerical data have been proposed, some of which divide a numerical range into several intervals or fuzzy intervals. Their decision trees, however, are not easy to understand. We propose a new version of ID3 algorithm to generate an understandable fuzzy decision tree using fuzzy sets defined by a user. We apply it to diagnosis for potential transformers by analyzing gas in oil.<>
模糊ID3算法的模糊决策树及其在诊断系统中的应用
ID3算法是一种流行的、特别有效的从符号数据中做出分类决策树的方法。数值数据的修正算法已被提出,其中一些算法将数值范围划分为几个区间或模糊区间。然而,他们的决策树并不容易理解。我们提出了一种新的ID3算法,利用用户定义的模糊集生成可理解的模糊决策树。将其应用于油中气体的分析诊断中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信