Towards informatic analysis of syslogs

Jon Stearley
{"title":"Towards informatic analysis of syslogs","authors":"Jon Stearley","doi":"10.1109/CLUSTR.2004.1392628","DOIUrl":null,"url":null,"abstract":"The complexity and cost of isolating the root cause of system problems in large parallel computers generally scales with the size of the system. Syslog messages provide a primary source of system feedback, but manual review is tedious and error prone. Informatic analysis can be used to detect subtle anomalies in the syslog message stream, thereby increasing the availability of the overall system. In This work the author describes the use of the bioinformatic-inspired Teiresias algorithm to automatically classify syslog messages, and compare it to an existing log analysis tool (SLCT). He then describes the use of occurrence statistics to group time-correlated messages, and present a simple graphical user interface for viewing analysis results. Finally, example analyses of syslogs from three independent clusters are presented.","PeriodicalId":123512,"journal":{"name":"2004 IEEE International Conference on Cluster Computing (IEEE Cat. No.04EX935)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"142","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2004 IEEE International Conference on Cluster Computing (IEEE Cat. No.04EX935)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CLUSTR.2004.1392628","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 142

Abstract

The complexity and cost of isolating the root cause of system problems in large parallel computers generally scales with the size of the system. Syslog messages provide a primary source of system feedback, but manual review is tedious and error prone. Informatic analysis can be used to detect subtle anomalies in the syslog message stream, thereby increasing the availability of the overall system. In This work the author describes the use of the bioinformatic-inspired Teiresias algorithm to automatically classify syslog messages, and compare it to an existing log analysis tool (SLCT). He then describes the use of occurrence statistics to group time-correlated messages, and present a simple graphical user interface for viewing analysis results. Finally, example analyses of syslogs from three independent clusters are presented.
走向syslog日志的信息化分析
在大型并行计算机中,隔离系统问题根源的复杂性和成本通常随系统规模的增加而增加。Syslog消息提供了系统反馈的主要来源,但是手工审查是乏味且容易出错的。信息分析可用于检测syslog消息流中的细微异常,从而提高整个系统的可用性。在这项工作中,作者描述了使用受生物信息学启发的Teiresias算法来自动分类syslog消息,并将其与现有的日志分析工具(SLCT)进行比较。然后,他描述了使用事件统计信息对时间相关消息进行分组,并提供了一个简单的图形用户界面,用于查看分析结果。最后,对三个独立集群的syslog日志进行了实例分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信