Body Segment Classification for Visible Human Cross Section Slices

Z. Xue, Sameer Kiran Antani, L. Long, Dina Demner-Fushman, G. Thoma
{"title":"Body Segment Classification for Visible Human Cross Section Slices","authors":"Z. Xue, Sameer Kiran Antani, L. Long, Dina Demner-Fushman, G. Thoma","doi":"10.1109/CBMS.2014.55","DOIUrl":null,"url":null,"abstract":"Visible human data has been widely used in various medical research and computer science applications. We present a new application for this data: a method to classify which body segment a transverse cross section image belongs to. The labeling of the data is created with the guidance of an online body cross section tutorial. The visual properties of the images are represented using a variety of feature descriptors. To avoid problems that arise from the large dimensionality of features, feature selection is applied. The multi-class SVM is employed as the classifier. Both the CT scans and the color photographs of cryosections of the whole body (male and female) are used to test the proposed method. The high performance with overall accuracy above 98% on both the 2160 CT dataset and the 1870 cryosectional photos show the method is very promising. Because of its observed effectiveness on visible human data, we will extend our approach to classify figures in biomedical articles.","PeriodicalId":398710,"journal":{"name":"2014 IEEE 27th International Symposium on Computer-Based Medical Systems","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 27th International Symposium on Computer-Based Medical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMS.2014.55","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Visible human data has been widely used in various medical research and computer science applications. We present a new application for this data: a method to classify which body segment a transverse cross section image belongs to. The labeling of the data is created with the guidance of an online body cross section tutorial. The visual properties of the images are represented using a variety of feature descriptors. To avoid problems that arise from the large dimensionality of features, feature selection is applied. The multi-class SVM is employed as the classifier. Both the CT scans and the color photographs of cryosections of the whole body (male and female) are used to test the proposed method. The high performance with overall accuracy above 98% on both the 2160 CT dataset and the 1870 cryosectional photos show the method is very promising. Because of its observed effectiveness on visible human data, we will extend our approach to classify figures in biomedical articles.
人体可见横切面的人体片段分类
可见的人体数据已广泛应用于各种医学研究和计算机科学应用。我们提出了一种新的应用方法:对横截面图像的体段进行分类。数据的标签是在在线身体截面教程的指导下创建的。图像的视觉属性使用各种特征描述符表示。为了避免由于特征维度大而产生的问题,采用了特征选择。采用多类支持向量机作为分类器。CT扫描和全身(男性和女性)冷冻切片的彩色照片都被用来测试所提出的方法。在2160 CT数据集和1870冰冻切片照片上,该方法的总体准确率均在98%以上,表明该方法非常有前景。由于它在可见的人类数据上观察到的有效性,我们将扩展我们的方法来分类生物医学文章中的数字。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信