Coupled matrix-tensor factorizations — The case of partially shared factors

L. D. Lathauwer, Eleftherios Kofidis
{"title":"Coupled matrix-tensor factorizations — The case of partially shared factors","authors":"L. D. Lathauwer, Eleftherios Kofidis","doi":"10.1109/ACSSC.2017.8335436","DOIUrl":null,"url":null,"abstract":"Coupled matrix-tensor factorizations have proved to be a powerful tool for data fusion problems in a variety of applications. Uniqueness conditions for such coupled decompositions have only recently been reported, demonstrating that coupling through a common factor can ensure uniqueness beyond what is possible when considering separate decompositions. In view of the increasing interest in application scenarios involving more general notions of coupling, we revisit in this paper the uniqueness question for the important case where the factors common to the tensor and the matrix only share some of their columns. Related computational aspects and numerical examples are also discussed.","PeriodicalId":296208,"journal":{"name":"2017 51st Asilomar Conference on Signals, Systems, and Computers","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 51st Asilomar Conference on Signals, Systems, and Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACSSC.2017.8335436","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

Coupled matrix-tensor factorizations have proved to be a powerful tool for data fusion problems in a variety of applications. Uniqueness conditions for such coupled decompositions have only recently been reported, demonstrating that coupling through a common factor can ensure uniqueness beyond what is possible when considering separate decompositions. In view of the increasing interest in application scenarios involving more general notions of coupling, we revisit in this paper the uniqueness question for the important case where the factors common to the tensor and the matrix only share some of their columns. Related computational aspects and numerical examples are also discussed.
耦合矩阵-张量分解。部分共享因子的情况
在各种应用中,耦合矩阵-张量分解已被证明是解决数据融合问题的有力工具。这种耦合分解的唯一性条件直到最近才被报道出来,这表明通过公共因素进行耦合可以确保唯一性,而不是考虑单独分解时可能出现的唯一性。鉴于对涉及更一般耦合概念的应用场景的兴趣日益增加,我们在本文中重新审视了张量和矩阵的公因式仅共享其部分列的重要情况下的唯一性问题。文中还讨论了相关的计算问题和数值算例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信