Evolved decision trees as conformal predictors

U. Johansson, Rikard König, Tuwe Löfström, Henrik Boström
{"title":"Evolved decision trees as conformal predictors","authors":"U. Johansson, Rikard König, Tuwe Löfström, Henrik Boström","doi":"10.1109/CEC.2013.6557778","DOIUrl":null,"url":null,"abstract":"In conformal prediction, predictive models output sets of predictions with a bound on the error rate. In classification, this translates to that the probability of excluding the correct class is lower than a predefined significance level, in the long run. Since the error rate is guaranteed, the most important criterion for conformal predictors is efficiency. Efficient conformal predictors minimize the number of elements in the output prediction sets, thus producing more informative predictions. This paper presents one of the first comprehensive studies where evolutionary algorithms are used to build conformal predictors. More specifically, decision trees evolved using genetic programming are evaluated as conformal predictors. In the experiments, the evolved trees are compared to decision trees induced using standard machine learning techniques on 33 publicly available benchmark data sets, with regard to predictive performance and efficiency. The results show that the evolved trees are generally more accurate, and the corresponding conformal predictors more efficient, than their induced counterparts. One important result is that the probability estimates of decision trees when used as conformal predictors should be smoothed, here using the Laplace correction. Finally, using the more discriminating Brier score instead of accuracy as the optimization criterion produced the most efficient conformal predictions.","PeriodicalId":211988,"journal":{"name":"2013 IEEE Congress on Evolutionary Computation","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Congress on Evolutionary Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2013.6557778","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

In conformal prediction, predictive models output sets of predictions with a bound on the error rate. In classification, this translates to that the probability of excluding the correct class is lower than a predefined significance level, in the long run. Since the error rate is guaranteed, the most important criterion for conformal predictors is efficiency. Efficient conformal predictors minimize the number of elements in the output prediction sets, thus producing more informative predictions. This paper presents one of the first comprehensive studies where evolutionary algorithms are used to build conformal predictors. More specifically, decision trees evolved using genetic programming are evaluated as conformal predictors. In the experiments, the evolved trees are compared to decision trees induced using standard machine learning techniques on 33 publicly available benchmark data sets, with regard to predictive performance and efficiency. The results show that the evolved trees are generally more accurate, and the corresponding conformal predictors more efficient, than their induced counterparts. One important result is that the probability estimates of decision trees when used as conformal predictors should be smoothed, here using the Laplace correction. Finally, using the more discriminating Brier score instead of accuracy as the optimization criterion produced the most efficient conformal predictions.
进化决策树作为适形预测器
在保形预测中,预测模型输出具有错误率界限的预测集。在分类中,从长远来看,这意味着排除正确类的概率低于预定义的显著性水平。由于错误率是有保证的,所以适形预测器最重要的标准是效率。高效的适形预测器将输出预测集中的元素数量最小化,从而产生更多信息的预测。本文提出了第一个综合研究,其中进化算法是用来建立保形预测。更具体地说,使用遗传规划进化的决策树被评估为适形预测因子。在实验中,在预测性能和效率方面,将进化的树与使用标准机器学习技术在33个公开可用的基准数据集上诱导的决策树进行比较。结果表明,进化树通常比诱导树更准确,相应的适形预测器也更有效。一个重要的结果是,决策树的概率估计当用作保形预测时,应该平滑,这里使用拉普拉斯校正。最后,使用更具判别性的Brier分数而不是准确性作为优化标准,产生了最有效的适形预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信