Using surrogate-based modeling to predict optimal I/O parameters of applications at the extreme scale

Michael Matheny, Stephen Herbein, N. Podhorszki, S. Klasky, M. Taufer
{"title":"Using surrogate-based modeling to predict optimal I/O parameters of applications at the extreme scale","authors":"Michael Matheny, Stephen Herbein, N. Podhorszki, S. Klasky, M. Taufer","doi":"10.1109/PADSW.2014.7097855","DOIUrl":null,"url":null,"abstract":"On petascale systems, the selection of optimal values for I/O parameters without taking into account the I/O size and pattern can cause the I/O time to dominate the simulation time, compromising the application's scalability. In this paper, we adopt and adapt an engineering method called surrogate-based modeling to efficiently search for the optimal I/O parameter values and accurately predict the associated I/O times at the extreme scale. Our approach allows us to address both the search and prediction in a short time, even when the application's I/O is large and exhibits irregular patterns.","PeriodicalId":421740,"journal":{"name":"2014 20th IEEE International Conference on Parallel and Distributed Systems (ICPADS)","volume":"90 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 20th IEEE International Conference on Parallel and Distributed Systems (ICPADS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PADSW.2014.7097855","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

On petascale systems, the selection of optimal values for I/O parameters without taking into account the I/O size and pattern can cause the I/O time to dominate the simulation time, compromising the application's scalability. In this paper, we adopt and adapt an engineering method called surrogate-based modeling to efficiently search for the optimal I/O parameter values and accurately predict the associated I/O times at the extreme scale. Our approach allows us to address both the search and prediction in a short time, even when the application's I/O is large and exhibits irregular patterns.
使用基于代理的建模来预测极端规模下应用程序的最佳I/O参数
在千万亿级系统上,选择I/O参数的最优值而不考虑I/O大小和模式可能会导致I/O时间支配模拟时间,从而损害应用程序的可伸缩性。在本文中,我们采用并调整了一种称为基于代理的建模的工程方法,以有效地搜索最优I/O参数值,并准确预测极端规模下的相关I/O次数。我们的方法允许我们在很短的时间内解决搜索和预测问题,即使应用程序的I/O很大并且呈现不规则的模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信