{"title":"Joint Power and Channel Allocation for Relay-Assisted Device- to- Device Communications","authors":"Miaomiao Liu, Li X. Zhang","doi":"10.1109/ISWCS.2018.8491059","DOIUrl":null,"url":null,"abstract":"Relay-assisted D2D (Device-to-Device) communication was proposed as a supplement to direct D2D communications for enhancing traffic offloading capacity in Long Term Evolution-Advanced (LTE-A) systems. In this paper, we formulate the joint power and channel allocation relay-assisted D2D communications problem aiming at maximizing the system sum rate of all cellular and D2D links while guaranteeing the minimum required SINR (Signal to Interference and Noise Ratio) of both links. As it is a MINLP (Mixed Integer Non-linear Programming), which can not be solved in polynomial time, we propose two heuristic algorithm (named Proposed HA1 and Proposed HA2) with different complexity levels to solve our design problems. Monte-Carlo simulation results show that the performances of our proposed algorithms with acceptable complexity have a good performance comparing with the optimal performance.","PeriodicalId":272951,"journal":{"name":"2018 15th International Symposium on Wireless Communication Systems (ISWCS)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 15th International Symposium on Wireless Communication Systems (ISWCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISWCS.2018.8491059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
Relay-assisted D2D (Device-to-Device) communication was proposed as a supplement to direct D2D communications for enhancing traffic offloading capacity in Long Term Evolution-Advanced (LTE-A) systems. In this paper, we formulate the joint power and channel allocation relay-assisted D2D communications problem aiming at maximizing the system sum rate of all cellular and D2D links while guaranteeing the minimum required SINR (Signal to Interference and Noise Ratio) of both links. As it is a MINLP (Mixed Integer Non-linear Programming), which can not be solved in polynomial time, we propose two heuristic algorithm (named Proposed HA1 and Proposed HA2) with different complexity levels to solve our design problems. Monte-Carlo simulation results show that the performances of our proposed algorithms with acceptable complexity have a good performance comparing with the optimal performance.