Parameters selection in predictive online simulation

Gerardo Santillán Martínez, Tuomas Miettinen, A. Aikala, J. Savolainen, Kalle Kondelin, Tommi A. Karhela, V. Vyatkin
{"title":"Parameters selection in predictive online simulation","authors":"Gerardo Santillán Martínez, Tuomas Miettinen, A. Aikala, J. Savolainen, Kalle Kondelin, Tommi A. Karhela, V. Vyatkin","doi":"10.1109/INDIN.2016.7819254","DOIUrl":null,"url":null,"abstract":"Industrial applications with reliable predictive features are becoming increasingly important. A tracking simulator is an example of an online simulation system with great capabilities that fills the gap left by other predictive applications. In a tracking simulator, a simulation model is run in parallel with a physical process controlled by the process' control system. At the same time, a tracking mechanism is used to keep the state of the simulation model as close as possible to the real process by continually adjusting parameters of the model. The selection of these parameters impacts directly on the quality of the tracking simulation results and it is a complex task in processes with a big number of variables. This paper presents two case studies of tracking simulation where the controlled parameters are selected using different techniques. The first case study deals with a laboratory-scale hot water generation process where the parameters' selection is performed manually. The second case study deals with a combined heat and power production process with major uncertainties in the process structure. In this case, we focus on the variance decomposition method used to determine the most suitable controlled parameters. Conclusions and future work are finally presented.","PeriodicalId":421680,"journal":{"name":"2016 IEEE 14th International Conference on Industrial Informatics (INDIN)","volume":"108 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 14th International Conference on Industrial Informatics (INDIN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INDIN.2016.7819254","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Industrial applications with reliable predictive features are becoming increasingly important. A tracking simulator is an example of an online simulation system with great capabilities that fills the gap left by other predictive applications. In a tracking simulator, a simulation model is run in parallel with a physical process controlled by the process' control system. At the same time, a tracking mechanism is used to keep the state of the simulation model as close as possible to the real process by continually adjusting parameters of the model. The selection of these parameters impacts directly on the quality of the tracking simulation results and it is a complex task in processes with a big number of variables. This paper presents two case studies of tracking simulation where the controlled parameters are selected using different techniques. The first case study deals with a laboratory-scale hot water generation process where the parameters' selection is performed manually. The second case study deals with a combined heat and power production process with major uncertainties in the process structure. In this case, we focus on the variance decomposition method used to determine the most suitable controlled parameters. Conclusions and future work are finally presented.
预测在线仿真中的参数选择
具有可靠预测功能的工业应用正变得越来越重要。跟踪模拟器是在线仿真系统的一个例子,它具有强大的功能,填补了其他预测应用程序留下的空白。在跟踪模拟器中,仿真模型与由过程控制系统控制的物理过程并行运行。同时,采用跟踪机制,通过不断调整模型参数,使仿真模型的状态尽可能接近真实过程。这些参数的选择直接影响跟踪仿真结果的质量,在具有大量变量的过程中是一项复杂的任务。本文给出了两个用不同技术选择被控参数的跟踪仿真实例。第一个案例研究涉及实验室规模的热水生成过程,其中参数的选择是手动执行的。第二个案例研究涉及热电联产过程,过程结构中存在重大不确定性。在这种情况下,我们关注的是用于确定最合适的控制参数的方差分解方法。最后提出了结论和今后的工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信