Uncertainty Visualization of the Marching Squares and Marching Cubes Topology Cases

Tushar M. Athawale, S. Sane, Chris R. Johnson
{"title":"Uncertainty Visualization of the Marching Squares and Marching Cubes Topology Cases","authors":"Tushar M. Athawale, S. Sane, Chris R. Johnson","doi":"10.1109/VIS49827.2021.9623267","DOIUrl":null,"url":null,"abstract":"Marching squares (MS) and marching cubes (MC) are widely used algorithms for level-set visualization of scientific data. In this paper, we address the challenge of uncertainty visualization of the topology cases of the MS and MC algorithms for uncertain scalar field data sampled on a uniform grid. The visualization of the MS and MC topology cases for uncertain data is challenging due to their exponential nature and the possibility of multiple topology cases per cell of a grid. We propose the topology case count and entropy-based techniques for quantifying uncertainty in the topology cases of the MS and MC algorithms when noise in data is modeled with probability distributions. We demonstrate the applicability of our techniques for independent and correlated uncertainty assumptions. We visualize the quantified topological uncertainty via color mapping proportional to uncertainty, as well as with interactive probability queries in the MS case and entropy isosurfaces in the MC case. We demonstrate the utility of our uncertainty quantification framework in identifying the isovalues exhibiting relatively high topological uncertainty. We illustrate the effectiveness of our techniques via results on synthetic, simulation, and hixel datasets.","PeriodicalId":387572,"journal":{"name":"2021 IEEE Visualization Conference (VIS)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Visualization Conference (VIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VIS49827.2021.9623267","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Marching squares (MS) and marching cubes (MC) are widely used algorithms for level-set visualization of scientific data. In this paper, we address the challenge of uncertainty visualization of the topology cases of the MS and MC algorithms for uncertain scalar field data sampled on a uniform grid. The visualization of the MS and MC topology cases for uncertain data is challenging due to their exponential nature and the possibility of multiple topology cases per cell of a grid. We propose the topology case count and entropy-based techniques for quantifying uncertainty in the topology cases of the MS and MC algorithms when noise in data is modeled with probability distributions. We demonstrate the applicability of our techniques for independent and correlated uncertainty assumptions. We visualize the quantified topological uncertainty via color mapping proportional to uncertainty, as well as with interactive probability queries in the MS case and entropy isosurfaces in the MC case. We demonstrate the utility of our uncertainty quantification framework in identifying the isovalues exhibiting relatively high topological uncertainty. We illustrate the effectiveness of our techniques via results on synthetic, simulation, and hixel datasets.
行进方形和行进立方体拓扑情况的不确定性可视化
行进方块(MS)和行进立方(MC)是科学数据水平集可视化中广泛使用的算法。在本文中,我们解决了在均匀网格上采样的不确定标量场数据的MS和MC算法拓扑情况的不确定性可视化的挑战。不确定数据的MS和MC拓扑情况的可视化具有挑战性,因为它们具有指数性质,并且网格的每个单元可能存在多个拓扑情况。当数据中的噪声用概率分布建模时,我们提出了拓扑情况计数和基于熵的技术来量化MS和MC算法拓扑情况中的不确定性。我们证明了我们的技术对独立和相关不确定性假设的适用性。我们通过与不确定性成比例的颜色映射,以及在MS情况下的交互式概率查询和在MC情况下的熵等值面来可视化量化的拓扑不确定性。我们展示了我们的不确定性量化框架在识别具有相对较高拓扑不确定性的等值方面的效用。我们通过合成、模拟和hixel数据集的结果说明了我们技术的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信