{"title":"REF: resource elasticity fairness with sharing incentives for multiprocessors","authors":"S. Zahedi, Benjamin C. Lee","doi":"10.1145/2541940.2541962","DOIUrl":null,"url":null,"abstract":"With the democratization of cloud and datacenter computing, users increasingly share large hardware platforms. In this setting, architects encounter two challenges: sharing fairly and sharing multiple resources. Drawing on economic game-theory, we rethink fairness in computer architecture. A fair allocation must provide sharing incentives (SI), envy-freeness (EF), and Pareto efficiency (PE). We show that Cobb-Douglas utility functions are well suited to modeling user preferences for cache capacity and memory bandwidth. And we present an allocation mechanism that uses Cobb-Douglas preferences to determine each user's fair share of the hardware. This mechanism provably guarantees SI, EF, and PE, as well as strategy-proofness in the large (SPL). And it does so with modest performance penalties, less than 10\\% throughput loss, relative to an unfair mechanism.","PeriodicalId":128805,"journal":{"name":"Proceedings of the 19th international conference on Architectural support for programming languages and operating systems","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"96","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 19th international conference on Architectural support for programming languages and operating systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2541940.2541962","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 96
Abstract
With the democratization of cloud and datacenter computing, users increasingly share large hardware platforms. In this setting, architects encounter two challenges: sharing fairly and sharing multiple resources. Drawing on economic game-theory, we rethink fairness in computer architecture. A fair allocation must provide sharing incentives (SI), envy-freeness (EF), and Pareto efficiency (PE). We show that Cobb-Douglas utility functions are well suited to modeling user preferences for cache capacity and memory bandwidth. And we present an allocation mechanism that uses Cobb-Douglas preferences to determine each user's fair share of the hardware. This mechanism provably guarantees SI, EF, and PE, as well as strategy-proofness in the large (SPL). And it does so with modest performance penalties, less than 10\% throughput loss, relative to an unfair mechanism.