Detecting Spam Tweets using Character N-gram Features

M.M. Ashour, Cherif R. Salama, M. El-Kharashi
{"title":"Detecting Spam Tweets using Character N-gram Features","authors":"M.M. Ashour, Cherif R. Salama, M. El-Kharashi","doi":"10.1109/ICCES.2018.8639297","DOIUrl":null,"url":null,"abstract":"Twitter popularity made it an important and instantaneous source of news and trending events around the world. It has attracted the attention of spammers who post malicious content embedded in tweets and in their profile pages. Spammers use different and evolving techniques to evade traditional security mechanisms, and that creates the need to develop robust solutions that adapt with these techniques. In this paper, we propose using a low-level character n-grams feature that avoids the use of tokenizers or any language dependent tools. Using a publicly available dataset, we evaluate the performance of multiple ma-chine learning classifiers with different representations of the proposed feature. Our experiments show that our approach is an enhancement over the approaches that use word n-grams from tweet tokens. We also show that our technique can detect spam tweets with low latency which is crucial in a real-time environment like twitter.","PeriodicalId":113848,"journal":{"name":"2018 13th International Conference on Computer Engineering and Systems (ICCES)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 13th International Conference on Computer Engineering and Systems (ICCES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCES.2018.8639297","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

Twitter popularity made it an important and instantaneous source of news and trending events around the world. It has attracted the attention of spammers who post malicious content embedded in tweets and in their profile pages. Spammers use different and evolving techniques to evade traditional security mechanisms, and that creates the need to develop robust solutions that adapt with these techniques. In this paper, we propose using a low-level character n-grams feature that avoids the use of tokenizers or any language dependent tools. Using a publicly available dataset, we evaluate the performance of multiple ma-chine learning classifiers with different representations of the proposed feature. Our experiments show that our approach is an enhancement over the approaches that use word n-grams from tweet tokens. We also show that our technique can detect spam tweets with low latency which is crucial in a real-time environment like twitter.
使用字符N-gram特征检测垃圾推文
Twitter的受欢迎程度使其成为世界各地新闻和趋势事件的重要即时来源。它引起了垃圾邮件发送者的注意,他们在推特和个人资料页面中嵌入恶意内容。垃圾邮件发送者使用不同的和不断发展的技术来规避传统的安全机制,这就需要开发适应这些技术的健壮的解决方案。在本文中,我们建议使用低级字符n-grams特征,以避免使用标记器或任何依赖于语言的工具。使用公开可用的数据集,我们评估了具有所提出特征的不同表示的多个机器学习分类器的性能。我们的实验表明,我们的方法是对使用来自tweet令牌的单词n-gram的方法的改进。我们还展示了我们的技术可以检测低延迟的垃圾消息,这在像twitter这样的实时环境中是至关重要的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信