Exact Analysis of the Recurrence Relations Generalized from the Tower of Hanoi

A. Matsuura
{"title":"Exact Analysis of the Recurrence Relations Generalized from the Tower of Hanoi","authors":"A. Matsuura","doi":"10.1137/1.9781611972986.6","DOIUrl":null,"url":null,"abstract":"In this paper, we analyze the recurrence relations generalized from the Tower of Hanoi problem of the form T(n, α, β) = min1≤t≤n{α T(n − t, α, β)+β S(t, 3)}, where S(t, 3) = 2t − 1 is the optimal solution for the 3-peg Tower of Hanoi problem. It is shown that when α and β are natural numbers and α ≥ 2, the sequence of differences of T(n, α, β)'s, i.e., T(n, α, β) − T(n − 1, α, β), consists of numbers of the form β2iαj (i, j ≥ 0) lined in the increasing order.","PeriodicalId":340112,"journal":{"name":"Workshop on Analytic Algorithmics and Combinatorics","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Analytic Algorithmics and Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/1.9781611972986.6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

In this paper, we analyze the recurrence relations generalized from the Tower of Hanoi problem of the form T(n, α, β) = min1≤t≤n{α T(n − t, α, β)+β S(t, 3)}, where S(t, 3) = 2t − 1 is the optimal solution for the 3-peg Tower of Hanoi problem. It is shown that when α and β are natural numbers and α ≥ 2, the sequence of differences of T(n, α, β)'s, i.e., T(n, α, β) − T(n − 1, α, β), consists of numbers of the form β2iαj (i, j ≥ 0) lined in the increasing order.
由河内塔推广的递推关系的精确分析
本文分析了由河内塔问题推广而来的T(n, α, β) = min1≤T≤n{α T(n−T, α, β)+β S(T, 3)}的递推关系,其中S(T, 3) = 2t−1是河内塔问题的最优解。结果表明,当α和β为自然数且α≥2时,T(n, α, β)的差值序列即T(n, α, β)−T(n−1,α, β)由β2i - αj (i, j≥0)形式的数按递增顺序排列。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信