Learning Discriminative Local Patterns with Unrestricted Structure for Face Recognition

Douglas Brown, Yongsheng Gao, J. Zhou
{"title":"Learning Discriminative Local Patterns with Unrestricted Structure for Face Recognition","authors":"Douglas Brown, Yongsheng Gao, J. Zhou","doi":"10.1109/DICTA.2013.6691504","DOIUrl":null,"url":null,"abstract":"Local binary patterns are a popular local texture feature for describing textures and objects. The standard method and many derivatives use a hand- crafted structure of point comparisons to encode the local texture to build the descriptors. In this paper we propose automatically learning a discriminative pattern structure from an extended pool of candidate pattern elements, without restricting the possible configurations. The learnt pattern structure may contain elements describing many different scales and gradient orientations that are not available in LBP (and related patterns), thus allowing the flexibility to construct structures capable of better representing the objects under test. We show through experimentation on two face recognition databases that this approach consistently outperforms other methods, in terms of training speed and recognition accuracy in every tested case.","PeriodicalId":231632,"journal":{"name":"2013 International Conference on Digital Image Computing: Techniques and Applications (DICTA)","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Digital Image Computing: Techniques and Applications (DICTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DICTA.2013.6691504","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Local binary patterns are a popular local texture feature for describing textures and objects. The standard method and many derivatives use a hand- crafted structure of point comparisons to encode the local texture to build the descriptors. In this paper we propose automatically learning a discriminative pattern structure from an extended pool of candidate pattern elements, without restricting the possible configurations. The learnt pattern structure may contain elements describing many different scales and gradient orientations that are not available in LBP (and related patterns), thus allowing the flexibility to construct structures capable of better representing the objects under test. We show through experimentation on two face recognition databases that this approach consistently outperforms other methods, in terms of training speed and recognition accuracy in every tested case.
基于非限制结构的判别局部模式学习
局部二值模式是一种常用的描述纹理和物体的局部纹理特征。标准方法和许多衍生方法使用手工制作的点比较结构来编码局部纹理以构建描述符。在本文中,我们提出了从扩展的候选模式元素池中自动学习判别模式结构,而不限制可能的配置。学习到的模式结构可能包含描述许多不同尺度和梯度方向的元素,这些元素在LBP(和相关模式)中是不可用的,因此允许灵活地构建能够更好地表示被测试对象的结构。我们通过在两个人脸识别数据库上的实验表明,在每个测试案例中,该方法在训练速度和识别准确性方面始终优于其他方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信