A Review on Automatic Cephalometric Landmark Identification Using Artificial Intelligence Techniques

Neeraja R, L. Anbarasi
{"title":"A Review on Automatic Cephalometric Landmark Identification Using Artificial Intelligence Techniques","authors":"Neeraja R, L. Anbarasi","doi":"10.1109/I-SMAC52330.2021.9641011","DOIUrl":null,"url":null,"abstract":"Accurate identification of landmarks from lateral cephalograms plays an important role in cephalometric analysis. Cephalometrics helps orthodontists, dentists, and maxillofacial surgeons to figure out the anatomical abnormalities and thereby provides optimal treatment planning. As the manual marking procedures are measurement error prone and consumes time, a grand challenge is organized by IEEE to automate the detection of landmarks from cephalometric radiographs in the International Symposium on Biomedical Imaging (ISBI) 2014 and 2015. This paper presents a review and comparison for various Artificial Intelligence Techniques proposed to automate cephalometric landmark identification from x-ray images.","PeriodicalId":178783,"journal":{"name":"2021 Fifth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Fifth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/I-SMAC52330.2021.9641011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate identification of landmarks from lateral cephalograms plays an important role in cephalometric analysis. Cephalometrics helps orthodontists, dentists, and maxillofacial surgeons to figure out the anatomical abnormalities and thereby provides optimal treatment planning. As the manual marking procedures are measurement error prone and consumes time, a grand challenge is organized by IEEE to automate the detection of landmarks from cephalometric radiographs in the International Symposium on Biomedical Imaging (ISBI) 2014 and 2015. This paper presents a review and comparison for various Artificial Intelligence Techniques proposed to automate cephalometric landmark identification from x-ray images.
基于人工智能技术的头颅自动地标识别研究进展
准确识别侧位头颅图的标志在头颅测量分析中起着重要的作用。头测术可以帮助正畸医生、牙医和颌面外科医生发现解剖异常,从而提供最佳的治疗计划。由于手工标记过程容易产生测量误差且耗时,IEEE在2014年和2015年国际生物医学成像研讨会(ISBI)上组织了一项重大挑战,即自动检测头颅x线片中的地标。本文综述和比较了各种人工智能技术在自动识别x射线图像中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信