With Great Speed Come Small Buffers: Space-Bandwidth Tradeoffs for Routing

Avery Miller, B. Patt-Shamir, Will Rosenbaum
{"title":"With Great Speed Come Small Buffers: Space-Bandwidth Tradeoffs for Routing","authors":"Avery Miller, B. Patt-Shamir, Will Rosenbaum","doi":"10.1145/3293611.3331614","DOIUrl":null,"url":null,"abstract":"We consider the Adversarial Queuing Theory (AQT) model, where packet arrivals are subject to a maximum average rate 0 ≤ ρ ≤ 1 and burstiness σ ≤ 0. In this model, we analyze the size of buffers required to avoid overflows in the basic case of a path. Our main results characterize the space required by the average rate and the number of distinct destinations: we show that O(ℓ d1/ℓ + σ) space suffice, where d is the number of distinct destinations and ℓ=⌋1/ρ⌊ and we show that Ω(1 over ℓ d1/ℓ + σ) space is necessary. For directed trees, we describe an algorithm whose buffer space requirement is at most 1 + d' + σ where d' is the maximum number of destinations on any root-leaf path.","PeriodicalId":153766,"journal":{"name":"Proceedings of the 2019 ACM Symposium on Principles of Distributed Computing","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2019 ACM Symposium on Principles of Distributed Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3293611.3331614","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

We consider the Adversarial Queuing Theory (AQT) model, where packet arrivals are subject to a maximum average rate 0 ≤ ρ ≤ 1 and burstiness σ ≤ 0. In this model, we analyze the size of buffers required to avoid overflows in the basic case of a path. Our main results characterize the space required by the average rate and the number of distinct destinations: we show that O(ℓ d1/ℓ + σ) space suffice, where d is the number of distinct destinations and ℓ=⌋1/ρ⌊ and we show that Ω(1 over ℓ d1/ℓ + σ) space is necessary. For directed trees, we describe an algorithm whose buffer space requirement is at most 1 + d' + σ where d' is the maximum number of destinations on any root-leaf path.
高速度带来小缓冲:路由的空间带宽权衡
我们考虑了对抗排队理论(AQT)模型,其中数据包到达的最大平均速率为0≤ρ≤1,突发性σ≤0。在这个模型中,我们分析了在路径的基本情况下避免溢出所需的缓冲区的大小。我们的主要结果表征了平均率所需的空间和不同目标的数量:我们证明了O(r d1/ r + σ)空间是足够的,其中d是不同目标的数量,并且我们证明了Ω(1 / r d1/ r + σ)空间是必要的。对于有向树,我们描述了一种算法,其缓冲空间需求最多为1 + d' + σ,其中d'为任意根叶路径上的最大目标数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信