{"title":"Decentralized Proportional-Integral Extremum Seeking Control for Heating, Ventilation and Air Conditioning (HVAC) Systems","authors":"J. Ebegbulem, M. Guay, J. House, T. Salsbury","doi":"10.1109/CCTA.2018.8511534","DOIUrl":null,"url":null,"abstract":"This paper considers the application of decentralized extremum seeking control to heating, ventilation and air conditioning (HVAC) systems in residential, commercial and industrial buildings. The HVAC system considered comprises two rooftop units that each provide cool air to two zones. The compressor, fan and expansion valve of each rooftop unit are controlled by three inner loop proportional-integral (PI) controllers to meet specified control requirements. The objective is to determine the optimal supply air temperature setpoint for each rooftop unit that minimizes the overall power consumption of the units. In addition, each setpoint must satisfy the control objectives of the three inner loop PI controllers. To tackle this problem, a decentralized proportional-integral extremum seeking control technique that avoids the need for communication between the units is employed. A simulation result is included to show the effectiveness of this technique.","PeriodicalId":358360,"journal":{"name":"2018 IEEE Conference on Control Technology and Applications (CCTA)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Conference on Control Technology and Applications (CCTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCTA.2018.8511534","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
This paper considers the application of decentralized extremum seeking control to heating, ventilation and air conditioning (HVAC) systems in residential, commercial and industrial buildings. The HVAC system considered comprises two rooftop units that each provide cool air to two zones. The compressor, fan and expansion valve of each rooftop unit are controlled by three inner loop proportional-integral (PI) controllers to meet specified control requirements. The objective is to determine the optimal supply air temperature setpoint for each rooftop unit that minimizes the overall power consumption of the units. In addition, each setpoint must satisfy the control objectives of the three inner loop PI controllers. To tackle this problem, a decentralized proportional-integral extremum seeking control technique that avoids the need for communication between the units is employed. A simulation result is included to show the effectiveness of this technique.