One-Shot Face Reenactment with 2D Facial Landmark Conditional Normalizing Flow

Dajin Han, Tae Hyun Kim
{"title":"One-Shot Face Reenactment with 2D Facial Landmark Conditional Normalizing Flow","authors":"Dajin Han, Tae Hyun Kim","doi":"10.1109/ICEIC57457.2023.10049848","DOIUrl":null,"url":null,"abstract":"Normalizing Flow (NF) has gained growing popularity in various image generation tasks. In this work, we develop a new method that enables the NF to control face generation, which has not been studied yet. To do so, we introduce several loss functions to facilitate stable training and inference while controlling face generation given a facial landmark. In our experiments, we evaluate the performance of the proposed method and show the capability of the NF in controlling the face generation task.","PeriodicalId":373752,"journal":{"name":"2023 International Conference on Electronics, Information, and Communication (ICEIC)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference on Electronics, Information, and Communication (ICEIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEIC57457.2023.10049848","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Normalizing Flow (NF) has gained growing popularity in various image generation tasks. In this work, we develop a new method that enables the NF to control face generation, which has not been studied yet. To do so, we introduce several loss functions to facilitate stable training and inference while controlling face generation given a facial landmark. In our experiments, we evaluate the performance of the proposed method and show the capability of the NF in controlling the face generation task.
基于二维面部地标条件归一化流的一次性人脸再现
归一化流(NF)在各种图像生成任务中越来越受欢迎。在这项工作中,我们开发了一种新的方法,使NF能够控制人脸生成,这是目前尚未研究的。为此,我们引入了几个损失函数,以促进稳定的训练和推理,同时控制给定面部地标的面部生成。在我们的实验中,我们评估了该方法的性能,并展示了NF在控制人脸生成任务中的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信