Underdetermined Blind Source Separation of anechoic speech mixtures in the Time-Frequency domain

Lv Yao, Li Shuangtian
{"title":"Underdetermined Blind Source Separation of anechoic speech mixtures in the Time-Frequency domain","authors":"Lv Yao, Li Shuangtian","doi":"10.1109/ICOSP.2008.4697059","DOIUrl":null,"url":null,"abstract":"This paper focuses on the problem of Under-determined Blind Source Separation (BSS) of anechoic speech mixtures. Our algorithm uses the idea of binary Time-Frequency (TF) mask employed in the Degenerate Unmixing Estimation Technique (DUET), but relaxes the strict sparsity assumption in DUET by allowing the sources to overlap in the TF domain to a certain extent. In particular, the number of active sources at any TF point does not exceed the number of sensors. We use the Unsupervised Robust C-Prototypes (URCP) algorithm to estimate the mixing parameters, and then divide the TF points into disjoint groups and overlapped groups to treat them separately. Experimental results show that the proposed method indicates a substantial increase in the Signal-to-Interference Ratio (SIR) comparing with DUET.","PeriodicalId":445699,"journal":{"name":"2008 9th International Conference on Signal Processing","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 9th International Conference on Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOSP.2008.4697059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper focuses on the problem of Under-determined Blind Source Separation (BSS) of anechoic speech mixtures. Our algorithm uses the idea of binary Time-Frequency (TF) mask employed in the Degenerate Unmixing Estimation Technique (DUET), but relaxes the strict sparsity assumption in DUET by allowing the sources to overlap in the TF domain to a certain extent. In particular, the number of active sources at any TF point does not exceed the number of sensors. We use the Unsupervised Robust C-Prototypes (URCP) algorithm to estimate the mixing parameters, and then divide the TF points into disjoint groups and overlapped groups to treat them separately. Experimental results show that the proposed method indicates a substantial increase in the Signal-to-Interference Ratio (SIR) comparing with DUET.
时频域消声语音混合的欠定盲源分离
研究了消声语音混合的欠定盲源分离问题。我们的算法采用了退化解混估计技术(degenedunmixestimation Technique, DUET)中使用的二值时频(TF)掩码思想,但通过允许源在TF域中一定程度的重叠,放宽了DUET中严格的稀疏性假设。特别是,在任何TF点的有源数量不超过传感器的数量。我们使用无监督鲁棒c -原型(URCP)算法估计混合参数,然后将TF点分为不相交组和重叠组进行单独处理。实验结果表明,与DUET相比,该方法显著提高了信号干扰比(SIR)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信