Darío Tilves Santiago, Carmén García Mateo, Soledad Torres Guijarro, Laura Docío Fernández, José Luis Alba Castro
{"title":"Estudio de bases de datos para el reconocimiento automático de lenguas de signos","authors":"Darío Tilves Santiago, Carmén García Mateo, Soledad Torres Guijarro, Laura Docío Fernández, José Luis Alba Castro","doi":"10.35869/hafh.v23i0.1658","DOIUrl":null,"url":null,"abstract":"Automatic sign language recognition (ASLR) is quite a complex task, not only for the difficulty of dealing with very dynamic video information, but also because almost every sign language (SL) can be considered as an under-resourced language when it comes to language technology. Spanish sign language (LSE) is one of those under-resourced languages. Developing technology for SSL implies a number of technical challenges that must be tackled down in a structured and sequential manner. In this paper, some problems of machine-learning- based ASLR are addressed. A review of publicly available datasets is given and a new one is presented. It is also discussed the current annotations methods and annotation programs. In our review of existing datasets, our main conclusion is that there is a need for more with high-quality data and annotations.","PeriodicalId":437114,"journal":{"name":"Hesperia: Anuario de Filología Hispánica","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hesperia: Anuario de Filología Hispánica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35869/hafh.v23i0.1658","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Automatic sign language recognition (ASLR) is quite a complex task, not only for the difficulty of dealing with very dynamic video information, but also because almost every sign language (SL) can be considered as an under-resourced language when it comes to language technology. Spanish sign language (LSE) is one of those under-resourced languages. Developing technology for SSL implies a number of technical challenges that must be tackled down in a structured and sequential manner. In this paper, some problems of machine-learning- based ASLR are addressed. A review of publicly available datasets is given and a new one is presented. It is also discussed the current annotations methods and annotation programs. In our review of existing datasets, our main conclusion is that there is a need for more with high-quality data and annotations.