A linear time algorithm for finding tree-decompositions of small treewidth

H. Bodlaender
{"title":"A linear time algorithm for finding tree-decompositions of small treewidth","authors":"H. Bodlaender","doi":"10.1145/167088.167161","DOIUrl":null,"url":null,"abstract":"In this paper, we give for constant $k$ a linear-time algorithm that, given a graph $G=(V,E)$, determines whether the treewidth of $G$ is at most $k$ and, if so, finds a tree-decomposition of $G$ with treewidth at most $k$. A consequence is that every minor-closed class of graphs that does not contain all planar graphs has a linear-time recognition algorithm. Another consequence is that a similar result holds when we look instead for path-decompositions with pathwidth at most some constant $k$.","PeriodicalId":280602,"journal":{"name":"Proceedings of the twenty-fifth annual ACM symposium on Theory of Computing","volume":"136 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1711","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the twenty-fifth annual ACM symposium on Theory of Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/167088.167161","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1711

Abstract

In this paper, we give for constant $k$ a linear-time algorithm that, given a graph $G=(V,E)$, determines whether the treewidth of $G$ is at most $k$ and, if so, finds a tree-decomposition of $G$ with treewidth at most $k$. A consequence is that every minor-closed class of graphs that does not contain all planar graphs has a linear-time recognition algorithm. Another consequence is that a similar result holds when we look instead for path-decompositions with pathwidth at most some constant $k$.
寻找小树宽树分解的线性时间算法
对于常数$k$,我们给出了一个线性时间算法,给定图$G=(V,E)$,确定$G$的树宽是否最大为$k$,如果最大为$k$,则求出$G$的树宽最大为$k$的树分解。其结果是,每一个不包含所有平面图的小闭类图都有一个线性时间识别算法。另一个结果是,当我们寻找路径宽度最多为某个常数k的路径分解时,也会得到类似的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信