A fuzzy approach to intensive data mining

M. Buscema, P. Sacco
{"title":"A fuzzy approach to intensive data mining","authors":"M. Buscema, P. Sacco","doi":"10.1109/NAFIPS.2010.5548178","DOIUrl":null,"url":null,"abstract":"For many spatial processes, there is a natural need to find out the point of origin on the basis of the available scatter of observations; think for instance of finding out the home-base of a criminal given the actual distribution of crime scenes, or the outbreak source of an epidemics. We introduce a new methodology based on the notion of Topological Weighted Centroid (TWC) that allows one to draw powerful inferences also in relatively intractable cases with few observations or a poorly understood underlying data generating process. In this paper we consider reconstruction of global political and economic relationships on the basis of a small-dimensional qualitative dataset.","PeriodicalId":394892,"journal":{"name":"2010 Annual Meeting of the North American Fuzzy Information Processing Society","volume":"385 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Annual Meeting of the North American Fuzzy Information Processing Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAFIPS.2010.5548178","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

For many spatial processes, there is a natural need to find out the point of origin on the basis of the available scatter of observations; think for instance of finding out the home-base of a criminal given the actual distribution of crime scenes, or the outbreak source of an epidemics. We introduce a new methodology based on the notion of Topological Weighted Centroid (TWC) that allows one to draw powerful inferences also in relatively intractable cases with few observations or a poorly understood underlying data generating process. In this paper we consider reconstruction of global political and economic relationships on the basis of a small-dimensional qualitative dataset.
密集数据挖掘的模糊方法
对于许多空间过程,自然需要根据现有的观测散点找出起源点;例如,根据犯罪现场的实际分布,找出罪犯的大本营,或者流行病的爆发源。我们介绍了一种基于拓扑加权质心(TWC)概念的新方法,该方法允许人们在观测较少或对底层数据生成过程理解不深的相对棘手的情况下也能得出强有力的推论。在本文中,我们考虑在小维度定性数据集的基础上重建全球政治和经济关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信