Real-Timeness Improvement of CAN-based Industrial Networks Based on Criticality Level

Ismail Ghodsollahee, Yasser Sedaghat
{"title":"Real-Timeness Improvement of CAN-based Industrial Networks Based on Criticality Level","authors":"Ismail Ghodsollahee, Yasser Sedaghat","doi":"10.52547/itrc.13.4.8","DOIUrl":null,"url":null,"abstract":"—Although applying new Internet-based communication technologies on industrial physical processes made great improvements in factory automation, there are still many challenges to meet the response time and reliability requirements of industrial communications. These challenges resulted from strict real-time requirements of industrial control system communications which are performed in harsh environments. The controller area network (CAN) communication protocol is commonly employed to deal with these challenges. However, in this protocol, even message retransmission requests of a faulty node can lead to timing failures. In this paper, to control the behavior of nodes, message retransmission is performed based on the criticality level of message reception. The proposed method, called MRMC+, improves the real-time behavior of a CAN bus in terms of response time by an average of 36.32% and 18.02%, respectively, compared to the standard CAN and WCTER-based approaches.","PeriodicalId":270455,"journal":{"name":"International Journal of Information and Communication Technology Research","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Information and Communication Technology Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52547/itrc.13.4.8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

—Although applying new Internet-based communication technologies on industrial physical processes made great improvements in factory automation, there are still many challenges to meet the response time and reliability requirements of industrial communications. These challenges resulted from strict real-time requirements of industrial control system communications which are performed in harsh environments. The controller area network (CAN) communication protocol is commonly employed to deal with these challenges. However, in this protocol, even message retransmission requests of a faulty node can lead to timing failures. In this paper, to control the behavior of nodes, message retransmission is performed based on the criticality level of message reception. The proposed method, called MRMC+, improves the real-time behavior of a CAN bus in terms of response time by an average of 36.32% and 18.02%, respectively, compared to the standard CAN and WCTER-based approaches.
基于临界水平的can工业网络实时性改进
-虽然基于互联网的新型通信技术在工业物理过程中的应用使工厂自动化有了很大的提高,但在满足工业通信的响应时间和可靠性要求方面仍然存在许多挑战。这些挑战源于在恶劣环境中执行的工业控制系统通信的严格实时性要求。控制器局域网(CAN)通信协议通常被用来应对这些挑战。然而,在该协议中,即使是故障节点的消息重传请求也可能导致定时失败。为了控制节点的行为,本文根据消息接收的临界级别进行消息重传。与标准CAN和基于wcter的方法相比,所提出的MRMC+方法在响应时间方面平均提高了CAN总线的实时行为36.32%和18.02%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信