A Fast Iterative Rule-based Linguistic Classifier for hyperspectral remote sensing tasks

D. Stavrakoudis, G. Galidaki, I. Gitas, Ioannis B. Theocharis
{"title":"A Fast Iterative Rule-based Linguistic Classifier for hyperspectral remote sensing tasks","authors":"D. Stavrakoudis, G. Galidaki, I. Gitas, Ioannis B. Theocharis","doi":"10.1109/GEFS.2011.5949501","DOIUrl":null,"url":null,"abstract":"This paper introduces a genetic fuzzy rule-based classification system (GFRBCS), specifically designed to effectively handle highly-dimensional features spaces. The proposed methodology follows the principles of the iterative rule learning (IRL) approach, whereby a rule extraction algorithm (REA) is invoked in an iterative fashion, producing one fuzzy rule at a time. The REA is performed in two successive steps: the first one selects the relevant features of the currently extracted rule, whereas the second one decides the antecedent part of the fuzzy rule, using the previously selected subset of features. The performance of the classifier is finally optimized through a genetic tuning post-processing stage. Comparative results using a hyperspectral satellite image indicate the effectiveness of the proposed methodology in handling highly-dimensional classification problems, compared to other GFRBCSs.","PeriodicalId":120918,"journal":{"name":"2011 IEEE 5th International Workshop on Genetic and Evolutionary Fuzzy Systems (GEFS)","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 5th International Workshop on Genetic and Evolutionary Fuzzy Systems (GEFS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GEFS.2011.5949501","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper introduces a genetic fuzzy rule-based classification system (GFRBCS), specifically designed to effectively handle highly-dimensional features spaces. The proposed methodology follows the principles of the iterative rule learning (IRL) approach, whereby a rule extraction algorithm (REA) is invoked in an iterative fashion, producing one fuzzy rule at a time. The REA is performed in two successive steps: the first one selects the relevant features of the currently extracted rule, whereas the second one decides the antecedent part of the fuzzy rule, using the previously selected subset of features. The performance of the classifier is finally optimized through a genetic tuning post-processing stage. Comparative results using a hyperspectral satellite image indicate the effectiveness of the proposed methodology in handling highly-dimensional classification problems, compared to other GFRBCSs.
基于快速迭代规则的高光谱遥感语言分类器
本文介绍了一种基于遗传模糊规则的分类系统(GFRBCS),该系统专门设计用于有效处理高维特征空间。所提出的方法遵循迭代规则学习(IRL)方法的原则,即以迭代方式调用规则提取算法(REA),每次生成一个模糊规则。REA分两个连续的步骤执行:第一步选择当前提取的规则的相关特征,而第二步使用先前选择的特征子集决定模糊规则的先行部分。最后通过遗传调优后处理阶段优化分类器的性能。使用高光谱卫星图像的对比结果表明,与其他gfrbcs相比,所提出的方法在处理高维分类问题方面是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信