Combining Prostate Cancer Region Predictions from MALDI Spectra Processing and Texture Analysis

Jiang Li, A. Vadlamudi, Shao-Hui Chuang, Xiaoyan Sun, Bo Sun, F. McKenzie, L. Cazares, J. Nyalwidhe, D. Troyer, O. Semmes
{"title":"Combining Prostate Cancer Region Predictions from MALDI Spectra Processing and Texture Analysis","authors":"Jiang Li, A. Vadlamudi, Shao-Hui Chuang, Xiaoyan Sun, Bo Sun, F. McKenzie, L. Cazares, J. Nyalwidhe, D. Troyer, O. Semmes","doi":"10.1109/BIBE.2010.20","DOIUrl":null,"url":null,"abstract":"We present a three-step method to predict Prostate cancer (PCa) regions on biopsy tissue samples based on high confidence, low resolution PCa regions marked by a pathologist. First, we apply a texture analysis technique on a high magnification optical image to predict PCa regions on an adjacent tissue slice. Second, we design a prediction model for the same purpose using matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) tissue imaging data from the adjacent slice. Finally, we fuse those two results to obtain the PCa regions that will assist MALDI imaging biomarker identification. Experiment results show that the texture analysis based prediction is sensitive (sen. 87.45%) but not specific (spe. 75%), and the prediction based on the MALDI spectra data is specific (spe. 100%) but less sensitive (sen. 50.98%). By combining those two results, a much better prediction for PCa regions on the adjacent slice can be achieved (sen. 80.39%, spe. 93.09%).","PeriodicalId":330904,"journal":{"name":"2010 IEEE International Conference on BioInformatics and BioEngineering","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on BioInformatics and BioEngineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBE.2010.20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We present a three-step method to predict Prostate cancer (PCa) regions on biopsy tissue samples based on high confidence, low resolution PCa regions marked by a pathologist. First, we apply a texture analysis technique on a high magnification optical image to predict PCa regions on an adjacent tissue slice. Second, we design a prediction model for the same purpose using matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) tissue imaging data from the adjacent slice. Finally, we fuse those two results to obtain the PCa regions that will assist MALDI imaging biomarker identification. Experiment results show that the texture analysis based prediction is sensitive (sen. 87.45%) but not specific (spe. 75%), and the prediction based on the MALDI spectra data is specific (spe. 100%) but less sensitive (sen. 50.98%). By combining those two results, a much better prediction for PCa regions on the adjacent slice can be achieved (sen. 80.39%, spe. 93.09%).
结合MALDI光谱处理和纹理分析的前列腺癌区域预测
我们提出了一个三步的方法来预测前列腺癌(PCa)区域活检组织样本基于高可信度,低分辨率的PCa区域由病理学家标记。首先,我们在高倍光学图像上应用纹理分析技术来预测相邻组织切片上的PCa区域。其次,我们利用基质辅助激光解吸/电离质谱(MALDI-MS)邻近切片的组织成像数据设计了一个预测模型。最后,我们将这两个结果融合以获得有助于MALDI成像生物标志物鉴定的PCa区域。实验结果表明,基于纹理分析的预测灵敏度为87.45%,但特异性较低。75%),基于MALDI光谱数据的预测具有特异性(spe。100%),但敏感度较低(参议员50.98%)。结合这两个结果,可以更好地预测相邻切片上的PCa区域(sen = 80.39%)。93.09%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信