Deng Zhou, Vania Fang, T. Xie, Wen Pan, R. Kesavan, Tony Lin, N. Patel
{"title":"Empirical Evaluation and Enhancement of Enterprise Storage System Request Scheduling","authors":"Deng Zhou, Vania Fang, T. Xie, Wen Pan, R. Kesavan, Tony Lin, N. Patel","doi":"10.1145/3193741","DOIUrl":null,"url":null,"abstract":"Since little has been reported in the literature concerning enterprise storage system file-level request scheduling, we do not have enough knowledge about how various scheduling factors affect performance. Moreover, we are in lack of a good understanding on how to enhance request scheduling to adapt to the changing characteristics of workloads and hardware resources. To answer these questions, we first build a request scheduler prototype based on WAFL®, a mainstream file system running on numerous enterprise storage systems worldwide. Next, we use the prototype to quantitatively measure the impact of various scheduling configurations on performance on a NetApp®'s enterprise-class storage system. Several observations have been made. For example, we discover that in order to improve performance, the priority of write requests and non-preempted restarted requests should be boosted in some workloads. Inspired by these observations, we further propose two scheduling enhancement heuristics called SORD (size-oriented request dispatching) and QATS (queue-depth aware time slicing). Finally, we evaluate them by conducting a wide range of experiments using workloads generated by SPC-1 and SFS2014 on both HDD-based and all-flash platforms. Experimental results show that the combination of the two can noticeably reduce average request latency under some workloads.","PeriodicalId":273014,"journal":{"name":"ACM Transactions on Storage (TOS)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Storage (TOS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3193741","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Since little has been reported in the literature concerning enterprise storage system file-level request scheduling, we do not have enough knowledge about how various scheduling factors affect performance. Moreover, we are in lack of a good understanding on how to enhance request scheduling to adapt to the changing characteristics of workloads and hardware resources. To answer these questions, we first build a request scheduler prototype based on WAFL®, a mainstream file system running on numerous enterprise storage systems worldwide. Next, we use the prototype to quantitatively measure the impact of various scheduling configurations on performance on a NetApp®'s enterprise-class storage system. Several observations have been made. For example, we discover that in order to improve performance, the priority of write requests and non-preempted restarted requests should be boosted in some workloads. Inspired by these observations, we further propose two scheduling enhancement heuristics called SORD (size-oriented request dispatching) and QATS (queue-depth aware time slicing). Finally, we evaluate them by conducting a wide range of experiments using workloads generated by SPC-1 and SFS2014 on both HDD-based and all-flash platforms. Experimental results show that the combination of the two can noticeably reduce average request latency under some workloads.