{"title":"Rate-Sensitive Micromechanical Model for Concrete","authors":"D. Chandra, T. Krauthammer","doi":"10.14359/5927","DOIUrl":null,"url":null,"abstract":"A micromechanical damage model for concrete capable of taking into account the effect of highly time-varying load (time-varying stress) is outlined here. Giving primary consideration to concrete-type material, it is shown how an existing self-consistent rate-insensitive model can be modified and extended to induce rate dependency of concrete with pre-existing damage (cracks). The variations of several fracture mechanics parameters of concrete, viz., stress intensity factors, fracture toughness, etc., under the influence of high loading rates are investigated: the role of inertia of the material is explained and quantified. The process of crack evolution including crack kinking and nucleation under tensile and compressive stress-field has been thoroughly considered along with all possible situations that may arise. The resulting rate-sensitive model has been codified for high-speed computer and a few experiments have been replicated to validate it.","PeriodicalId":296155,"journal":{"name":"SP-175: Concrete and Blast Effects","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SP-175: Concrete and Blast Effects","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14359/5927","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
A micromechanical damage model for concrete capable of taking into account the effect of highly time-varying load (time-varying stress) is outlined here. Giving primary consideration to concrete-type material, it is shown how an existing self-consistent rate-insensitive model can be modified and extended to induce rate dependency of concrete with pre-existing damage (cracks). The variations of several fracture mechanics parameters of concrete, viz., stress intensity factors, fracture toughness, etc., under the influence of high loading rates are investigated: the role of inertia of the material is explained and quantified. The process of crack evolution including crack kinking and nucleation under tensile and compressive stress-field has been thoroughly considered along with all possible situations that may arise. The resulting rate-sensitive model has been codified for high-speed computer and a few experiments have been replicated to validate it.