Financial Prediction Using Manifold Wavelet Kernel

Lingbing Tang, Huan-Ye Sheng
{"title":"Financial Prediction Using Manifold Wavelet Kernel","authors":"Lingbing Tang, Huan-Ye Sheng","doi":"10.1109/WMWA.2009.77","DOIUrl":null,"url":null,"abstract":"This paper constructs an admissible manifold wavelet kernel (MWK) for support vector machine (SVM) to forecast the volatility of financial time series based on generalized autoregressive conditional heteroscedasticity(GARCH) model. The MWK is obtained by incorporating the wavelet technique and manifold theory into SVM. Unlike Gaussian kernel in SVM, the MWK can approximate arbitrary nonlinear functions. The applicability and validity of MWK for volatility forecast are confirmed through experiments on simulated data sets.","PeriodicalId":375180,"journal":{"name":"2009 Second Pacific-Asia Conference on Web Mining and Web-based Application","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Second Pacific-Asia Conference on Web Mining and Web-based Application","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WMWA.2009.77","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper constructs an admissible manifold wavelet kernel (MWK) for support vector machine (SVM) to forecast the volatility of financial time series based on generalized autoregressive conditional heteroscedasticity(GARCH) model. The MWK is obtained by incorporating the wavelet technique and manifold theory into SVM. Unlike Gaussian kernel in SVM, the MWK can approximate arbitrary nonlinear functions. The applicability and validity of MWK for volatility forecast are confirmed through experiments on simulated data sets.
基于流形小波核的金融预测
基于广义自回归条件异方差(GARCH)模型,为支持向量机(SVM)构造了一个可容许流形小波核(MWK)来预测金融时间序列的波动性。将小波变换技术和流形理论结合到支持向量机中,得到了最小熵值。与支持向量机中的高斯核不同,MWK可以近似任意非线性函数。通过在模拟数据集上的实验,验证了MWK在波动率预测中的适用性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信