Extended Graph Backbone for Motif Analysis

A. Maratea, A. Petrosino, M. Manzo
{"title":"Extended Graph Backbone for Motif Analysis","authors":"A. Maratea, A. Petrosino, M. Manzo","doi":"10.1145/3134302.3134323","DOIUrl":null,"url":null,"abstract":"Local interaction patterns in complex networks, called motifs, explain many of the network properties but are challenging to extract due to the large search space. In this paper first an approximate representation of a complex network in terms of an extended backbone is proposed, then a reduced sampling space that speeds up the motif search in different kinds of networks is explored based on this representation. It will be shown using several real datasets that the proposed method is effective in reducing the sampling space, extracts the same relevant patterns, and hence preservs the network local structural information.","PeriodicalId":131196,"journal":{"name":"Proceedings of the 18th International Conference on Computer Systems and Technologies","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 18th International Conference on Computer Systems and Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3134302.3134323","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Local interaction patterns in complex networks, called motifs, explain many of the network properties but are challenging to extract due to the large search space. In this paper first an approximate representation of a complex network in terms of an extended backbone is proposed, then a reduced sampling space that speeds up the motif search in different kinds of networks is explored based on this representation. It will be shown using several real datasets that the proposed method is effective in reducing the sampling space, extracts the same relevant patterns, and hence preservs the network local structural information.
基序分析的扩展图形主干
复杂网络中的局部交互模式,称为基序,解释了许多网络特性,但由于搜索空间大,很难提取。本文首先提出了一种基于扩展主干的复杂网络的近似表示,然后在此基础上探索了一种简化的采样空间,以加快不同类型网络中基序的搜索速度。实验结果表明,该方法有效地缩小了采样空间,提取了相同的相关模式,并保留了网络的局部结构信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信