Grey-box modelling of a motorcycle shock absorber

S. Evangelou, D. Limebeer, R. Sharp, Malcolm C. Smith
{"title":"Grey-box modelling of a motorcycle shock absorber","authors":"S. Evangelou, D. Limebeer, R. Sharp, Malcolm C. Smith","doi":"10.1109/CDC.2004.1428748","DOIUrl":null,"url":null,"abstract":"There is an increasing use of virtual prototyping tools in the motorcycle industry, aimed at reducing the development time of new models and speeding up performance optimization, by providing the designer with an in-laboratory virtual test track. Virtual prototyping software is essentially multi body simulation software that requires the availability of models of all the vehicle components. The choice of the model is then of paramount importance, since it heavily affects the accuracy and reliability of the simulation results. Conventional models (like linear models) are often inadequate to describe the behavior of complex nonlinear components, so that it is necessary to appeal to different modelling approaches. This is actually the case when dealing with motorcycle suspension systems, given that their most critical part, the shock absorber, exhibits nonlinear and time-variant behavior. In this paper, a grey-box model of a racing motorcycle mono tube shock absorber is proposed. It consists of a nonlinear parametric model and a black-box, neural network based model. The absorber model has been implemented in a numerical simulation environment, and it has been validated against experimental test data. The results of the validation show that the model is able to reproduce the real behavior of the shock absorber with an accuracy that matches or even beats that of other models previously presented in the literature. The interfacing of the proposed model to the ADAMS virtual prototyping environment is also discussed.","PeriodicalId":411031,"journal":{"name":"IEEE Conference on Decision and Control","volume":"260 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Conference on Decision and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.2004.1428748","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

There is an increasing use of virtual prototyping tools in the motorcycle industry, aimed at reducing the development time of new models and speeding up performance optimization, by providing the designer with an in-laboratory virtual test track. Virtual prototyping software is essentially multi body simulation software that requires the availability of models of all the vehicle components. The choice of the model is then of paramount importance, since it heavily affects the accuracy and reliability of the simulation results. Conventional models (like linear models) are often inadequate to describe the behavior of complex nonlinear components, so that it is necessary to appeal to different modelling approaches. This is actually the case when dealing with motorcycle suspension systems, given that their most critical part, the shock absorber, exhibits nonlinear and time-variant behavior. In this paper, a grey-box model of a racing motorcycle mono tube shock absorber is proposed. It consists of a nonlinear parametric model and a black-box, neural network based model. The absorber model has been implemented in a numerical simulation environment, and it has been validated against experimental test data. The results of the validation show that the model is able to reproduce the real behavior of the shock absorber with an accuracy that matches or even beats that of other models previously presented in the literature. The interfacing of the proposed model to the ADAMS virtual prototyping environment is also discussed.
摩托车减震器的灰盒模型
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信