Noisy Deep Dictionary Learning

Vanika Singhal, A. Majumdar
{"title":"Noisy Deep Dictionary Learning","authors":"Vanika Singhal, A. Majumdar","doi":"10.1145/3041823.3041826","DOIUrl":null,"url":null,"abstract":"In a recent work, the concept of deep dictionary learning was proposed. Learning a single level of dictionary is a well researched topic in image processing and computer vision community. In deep dictionary learning, the first level proceeds like standard dictionary learning; in subsequent layers the (scaled) output coefficients from the previous layer are used as inputs for dictionary learning. This is an unsupervised deep learning approach. The features from the final / deepest layer and representations for subsequent analysis and classification. The seminal paper of stacked denoising autoencoders have shown that robust deep models can be learnt when augmented noisy data is used for training stacked autoencoders instead of clean data. We adopt this idea into the deep dictionary learning framework; instead of using only clean data we augment the training dataset by adding noise; this improves robustness. Experimental evaluation on various benchmark datasets on classification and clustering shows that our proposal yields significant improvement.","PeriodicalId":173593,"journal":{"name":"Proceedings of the 4th ACM IKDD Conferences on Data Sciences","volume":"89 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 4th ACM IKDD Conferences on Data Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3041823.3041826","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

In a recent work, the concept of deep dictionary learning was proposed. Learning a single level of dictionary is a well researched topic in image processing and computer vision community. In deep dictionary learning, the first level proceeds like standard dictionary learning; in subsequent layers the (scaled) output coefficients from the previous layer are used as inputs for dictionary learning. This is an unsupervised deep learning approach. The features from the final / deepest layer and representations for subsequent analysis and classification. The seminal paper of stacked denoising autoencoders have shown that robust deep models can be learnt when augmented noisy data is used for training stacked autoencoders instead of clean data. We adopt this idea into the deep dictionary learning framework; instead of using only clean data we augment the training dataset by adding noise; this improves robustness. Experimental evaluation on various benchmark datasets on classification and clustering shows that our proposal yields significant improvement.
噪声深度字典学习
在最近的一项工作中,提出了深度字典学习的概念。在图像处理和计算机视觉领域,学习单一层次的字典是一个研究得很好的话题。在深度字典学习中,第一层像标准字典学习一样进行;在随后的层中,前一层的(缩放后的)输出系数被用作字典学习的输入。这是一种无监督的深度学习方法。来自最终/最深层的特征以及用于后续分析和分类的表示。堆叠去噪自编码器的论文表明,当使用增强的噪声数据而不是干净数据来训练堆叠自编码器时,可以学习到鲁棒的深度模型。我们将这个想法应用到深度字典学习框架中;我们不是只使用干净的数据,而是通过添加噪声来增强训练数据集;这提高了健壮性。在不同的分类和聚类基准数据集上进行的实验评估表明,我们的建议取得了显著的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信