Particle filter for combined wheel-slip and vehicle-motion estimation

K. Berntorp
{"title":"Particle filter for combined wheel-slip and vehicle-motion estimation","authors":"K. Berntorp","doi":"10.1109/ACC.2015.7172186","DOIUrl":null,"url":null,"abstract":"The vehicle-estimation problem is approached by fusing measurements from wheel encoders, an inertial measurement unit, and (optionally) a global positioning system in a Rao-Blackwellized particle filter. In total 14 states are estimated, including key variables in active safety systems, such as longitudinal velocity, roll angle, and wheel slip for all four wheels. The method only relies on kinematic relationships. We present experimental data for one test scenario, using a Volkswagen Golf equipped with state-of-the-art sensors for determining ground truth. We report highly promising results, even for periods of combined aggressive cornering and braking.","PeriodicalId":223665,"journal":{"name":"2015 American Control Conference (ACC)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 American Control Conference (ACC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACC.2015.7172186","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

The vehicle-estimation problem is approached by fusing measurements from wheel encoders, an inertial measurement unit, and (optionally) a global positioning system in a Rao-Blackwellized particle filter. In total 14 states are estimated, including key variables in active safety systems, such as longitudinal velocity, roll angle, and wheel slip for all four wheels. The method only relies on kinematic relationships. We present experimental data for one test scenario, using a Volkswagen Golf equipped with state-of-the-art sensors for determining ground truth. We report highly promising results, even for periods of combined aggressive cornering and braking.
轮滑与车辆运动联合估计的粒子滤波
车辆估计问题是通过融合来自车轮编码器,惯性测量单元和(可选)在Rao-Blackwellized粒子滤波器中的全球定位系统的测量来解决的。总共估计了14种状态,包括主动安全系统的关键变量,如四个车轮的纵向速度、滚转角和车轮滑移。该方法仅依赖于运动关系。我们提出了一个测试场景的实验数据,使用大众高尔夫配备了最先进的传感器来确定地面真相。我们报告了非常有希望的结果,即使是在联合积极转弯和制动的时期。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信