Modified steepest descent and Newton algorithms for orthogonally constrained optimisation. Part II. The complex Grassmann manifold

J. Manton
{"title":"Modified steepest descent and Newton algorithms for orthogonally constrained optimisation. Part II. The complex Grassmann manifold","authors":"J. Manton","doi":"10.1109/ISSPA.2001.949781","DOIUrl":null,"url":null,"abstract":"The classical steepest descent and Newton algorithms can be used to minimise a cost function f(X). This paper shows how they can be modified to take into account the constraint that the columns of the complex-valued matrix X are mutually orthogonal and have unit norm. It is assumed that the cost function satisfies f(XQ) = f(X) for any unitary matrix Q. This allows the constrained optimisation problem to be converted into an unconstrained one on the Grassmann manifold. This significantly reduces the dimension of the optimisation problem and often results in faster convergence.","PeriodicalId":236050,"journal":{"name":"Proceedings of the Sixth International Symposium on Signal Processing and its Applications (Cat.No.01EX467)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Sixth International Symposium on Signal Processing and its Applications (Cat.No.01EX467)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSPA.2001.949781","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

The classical steepest descent and Newton algorithms can be used to minimise a cost function f(X). This paper shows how they can be modified to take into account the constraint that the columns of the complex-valued matrix X are mutually orthogonal and have unit norm. It is assumed that the cost function satisfies f(XQ) = f(X) for any unitary matrix Q. This allows the constrained optimisation problem to be converted into an unconstrained one on the Grassmann manifold. This significantly reduces the dimension of the optimisation problem and often results in faster convergence.
正交约束优化的改进最陡下降和牛顿算法。第二部分。复数格拉斯曼流形
经典的最陡下降和牛顿算法可用于最小化成本函数f(X)。本文给出了如何将它们加以修改,以考虑复值矩阵X的列相互正交且具有单位范数的约束。假设代价函数满足f(XQ) = f(X)对于任何酉矩阵q。这允许约束优化问题转换为Grassmann流形上的无约束优化问题。这大大减少了优化问题的维度,通常会导致更快的收敛。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信