Entity relationship ranking using differential keyword-role affinity

Rohit Naini, Pawan Yadav
{"title":"Entity relationship ranking using differential keyword-role affinity","authors":"Rohit Naini, Pawan Yadav","doi":"10.1145/3077240.3077255","DOIUrl":null,"url":null,"abstract":"Identifying relationship between named entities from a corpus of text is a well studied NLP problem. In this paper, we consider a tractable version of this wherein sample text snippets and corresponding roles are extracted and need to be ranked on relevance of text to the role. Our scoring approach uses a cumulative estimated relevance of all keywords observed in the text snippet. Relevance metrics are computed based on differential affinity of keywords to the roles observed in the training data.","PeriodicalId":326424,"journal":{"name":"Proceedings of the 3rd International Workshop on Data Science for Macro--Modeling with Financial and Economic Datasets","volume":"91 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 3rd International Workshop on Data Science for Macro--Modeling with Financial and Economic Datasets","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3077240.3077255","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Identifying relationship between named entities from a corpus of text is a well studied NLP problem. In this paper, we consider a tractable version of this wherein sample text snippets and corresponding roles are extracted and need to be ranked on relevance of text to the role. Our scoring approach uses a cumulative estimated relevance of all keywords observed in the text snippet. Relevance metrics are computed based on differential affinity of keywords to the roles observed in the training data.
使用差分关键字-角色亲和度对实体关系进行排序
从文本语料库中识别命名实体之间的关系是一个研究得很好的NLP问题。在本文中,我们考虑了一个易于处理的版本,其中提取示例文本片段和相应的角色,并需要根据文本与角色的相关性进行排名。我们的评分方法使用在文本片段中观察到的所有关键字的累积估计相关性。相关性度量是基于关键字与训练数据中观察到的角色的差异亲和力计算的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信