{"title":"Entity relationship ranking using differential keyword-role affinity","authors":"Rohit Naini, Pawan Yadav","doi":"10.1145/3077240.3077255","DOIUrl":null,"url":null,"abstract":"Identifying relationship between named entities from a corpus of text is a well studied NLP problem. In this paper, we consider a tractable version of this wherein sample text snippets and corresponding roles are extracted and need to be ranked on relevance of text to the role. Our scoring approach uses a cumulative estimated relevance of all keywords observed in the text snippet. Relevance metrics are computed based on differential affinity of keywords to the roles observed in the training data.","PeriodicalId":326424,"journal":{"name":"Proceedings of the 3rd International Workshop on Data Science for Macro--Modeling with Financial and Economic Datasets","volume":"91 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 3rd International Workshop on Data Science for Macro--Modeling with Financial and Economic Datasets","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3077240.3077255","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Identifying relationship between named entities from a corpus of text is a well studied NLP problem. In this paper, we consider a tractable version of this wherein sample text snippets and corresponding roles are extracted and need to be ranked on relevance of text to the role. Our scoring approach uses a cumulative estimated relevance of all keywords observed in the text snippet. Relevance metrics are computed based on differential affinity of keywords to the roles observed in the training data.