Class Incremental Learning for Video Action Classification

Jiawei Ma, Xiaoyu Tao, Jianxing Ma, Xiaopeng Hong, Yihong Gong
{"title":"Class Incremental Learning for Video Action Classification","authors":"Jiawei Ma, Xiaoyu Tao, Jianxing Ma, Xiaopeng Hong, Yihong Gong","doi":"10.1109/ICIP42928.2021.9506788","DOIUrl":null,"url":null,"abstract":"Class Incremental Learning (CIL) is a hot topic in machine learning for CNN models to learn new classes incrementally. However, most of the CIL studies are for image classification and object recognition tasks and few CIL studies are available for video action classification. To mitigate this problem, in this paper, we present a new Grow When Required network (GWR) based video CIL framework for action classification. GWR learns knowledge incrementally by modeling the manifold of video frames for each encountered action class in feature space. We also introduce a Knowledge Consolidation (KC) method to separate the feature manifolds of old class and new class and introduce an associative matrix for label prediction. Experimental results on KTH and Weizmann demonstrate the effectiveness of the framework.","PeriodicalId":314429,"journal":{"name":"2021 IEEE International Conference on Image Processing (ICIP)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP42928.2021.9506788","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Class Incremental Learning (CIL) is a hot topic in machine learning for CNN models to learn new classes incrementally. However, most of the CIL studies are for image classification and object recognition tasks and few CIL studies are available for video action classification. To mitigate this problem, in this paper, we present a new Grow When Required network (GWR) based video CIL framework for action classification. GWR learns knowledge incrementally by modeling the manifold of video frames for each encountered action class in feature space. We also introduce a Knowledge Consolidation (KC) method to separate the feature manifolds of old class and new class and introduce an associative matrix for label prediction. Experimental results on KTH and Weizmann demonstrate the effectiveness of the framework.
视频动作分类的类增量学习
类增量学习(Class Incremental Learning, CIL)是CNN模型增量学习新类的一个热点。然而,大多数的CIL研究都是针对图像分类和目标识别任务,很少有针对视频动作分类的CIL研究。为了解决这一问题,本文提出了一种新的基于GWR网络的视频CIL动作分类框架。GWR通过在特征空间中为每个遇到的动作类建模视频帧的流形来增量地学习知识。引入知识整合(Knowledge Consolidation, KC)方法分离新旧类的特征流形,并引入关联矩阵进行标签预测。KTH和Weizmann的实验结果证明了该框架的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信