Application of Grey-Equal Dimension and New Information Neural Network Model to Deformation Prediction

Wu Liangcai, Wei Zhiming, Liu Xiangtong, Z. Shuyuan
{"title":"Application of Grey-Equal Dimension and New Information Neural Network Model to Deformation Prediction","authors":"Wu Liangcai, Wei Zhiming, Liu Xiangtong, Z. Shuyuan","doi":"10.1109/ETCS.2010.191","DOIUrl":null,"url":null,"abstract":"According to the deformation trend of the plasmodium, the paper utilizes the concept of equal dimension and new information in grey theory to train BP network, sets up equal-dimension and new information model that can fully reflect the law of deformation, and carries on real deformation prediction with this model. Meanwhile, the text utilizes GM (1,1) model of grey theory to predict the plasmodium. By comparing the prediction of the two methods, it draws the conclusion: the equal dimension and new information model is suitable for long data prediction of array and the precision of GM(1,1) model is relatively high.","PeriodicalId":193276,"journal":{"name":"2010 Second International Workshop on Education Technology and Computer Science","volume":"226 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Second International Workshop on Education Technology and Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ETCS.2010.191","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

According to the deformation trend of the plasmodium, the paper utilizes the concept of equal dimension and new information in grey theory to train BP network, sets up equal-dimension and new information model that can fully reflect the law of deformation, and carries on real deformation prediction with this model. Meanwhile, the text utilizes GM (1,1) model of grey theory to predict the plasmodium. By comparing the prediction of the two methods, it draws the conclusion: the equal dimension and new information model is suitable for long data prediction of array and the precision of GM(1,1) model is relatively high.
灰色等维及新型信息神经网络模型在变形预测中的应用
根据疟原虫的变形趋势,利用灰色理论中的等维和新信息概念对BP网络进行训练,建立了能充分反映变形规律的等维新信息模型,并用该模型进行真实的变形预测。同时,本文利用灰色理论中的GM(1,1)模型对疟原虫进行预测。通过对两种预测方法的比较,得出结论:等维新信息模型适用于阵列长数据预测,GM(1,1)模型精度较高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信